Rh-catalyzed one-step reductive amidation of aldehydes has been developed. The protocol does not require an external hydrogen source and employs carbon monoxide as a deoxygenative agent. The direction of the reaction can be altered simply by changing the solvent: reaction in THF leads to amides, whereas methanol favors formation of tertiary amines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b02821DOI Listing

Publication Analysis

Top Keywords

reductive amidation
8
dichotomy atom-economical
4
atom-economical hydrogen-free
4
hydrogen-free reductive
4
amidation exhaustive
4
exhaustive reductive
4
reductive amination
4
amination rh-catalyzed
4
rh-catalyzed one-step
4
one-step reductive
4

Similar Publications

Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity. Herein, we present a streamlined deoxygenative photochemical alkylation of secondary amides, enabling the efficient synthesis of α-branched secondary amines.

View Article and Find Full Text PDF

In the wake of the pandemic, peptidyl protease inhibitors with Pro-based rigid Leu mimetics at the P position have emerged as potent drug candidates against the SARS-CoV-2 main protease. This success is intuitively attributed to the enhanced hydrophobic interactions and rigidity of Pro-based rigid Leu mimetics in the literature. However, the tertiary amide of proline P derivatives, which hinders the formation of a critical hydrogen bond with the enzyme active site, and the constrained PP conformation, which contradicts the protease preferred β-strand conformation, represent two overlooked disadvantages associated with these inhibitors over traditional inhibitors and, theoretically, should adversely affect their potency.

View Article and Find Full Text PDF

Objectives: This study aimed to determine whether incorporating nanostructured additives into bleaching agents enhances efficacy and reduces side effects while identifying gaps for further investigation.

Methods: A comprehensive search was conducted in electronic databases, including PubMed/Medline, Embase, Scopus, and ISI Web of Science. Two reviewers independently screened articles based on predefined criteria, resolving discrepancies through discussion or consultation with a third reviewer.

View Article and Find Full Text PDF

Discovery of 2-Pyrazolines That Inhibit the Phosphorylation of STAT3 as Nanomolar Cytotoxic Agents.

ACS Omega

January 2025

Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka 570006, India.

STAT3 has emerged as a validated target in cancer, being functionally associated with breast cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune surveillance. Previously, a series of compounds consisting of imidazo[1,2-]pyridine tethered 2-pyrazolines (referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+) BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-]pyridine clubbed 2-pyrazolines (-) and its amide derivatives (-) have been synthesized.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!