The ability to trap adatoms with an organic molecule on a surface has been used to obtain a range of molecular functionalities controlled by the choice of the molecular trapping site and local deprotonation. The tetraphenylporphyrin molecule used in this study contains three types of trapping sites: two carbon rings (phenyl and pyrrole) and the center of a macrocycle. Catching a gold adatom on the carbon rings leads to an electronic doping of the molecule, whereas trapping the adatom at the macrocycle center with single deprotonation leads to a molecular rotor and a second deprotonation leads to a molecular jumper. We call "atom trapping chemistry" the control of the structure, electronic, and dynamical properties of a molecule achieved by trapping metallic atoms with a molecule on a surface. In addition to the examples previously described, we show that more complex structures can be envisaged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b05235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!