The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn Fe O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201701696DOI Listing

Publication Analysis

Top Keywords

application li-o
8
low-polarization lithium-oxygen
4
lithium-oxygen battery
4
battery [deme][tfsi]
4
[deme][tfsi] ionic
4
ionic liquid
4
electrolyte
4
liquid electrolyte
4
electrolyte room-temperature
4
room-temperature molten
4

Similar Publications

This study explored the genomic alterations in , a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels.

View Article and Find Full Text PDF

Coordination Regulation Enabling Deep Eutectic Electrolyte for Fast-Charging High-Voltage Lithium Metal Batteries.

Adv Mater

December 2024

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

The safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut-off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate-based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions.

View Article and Find Full Text PDF

Biomass with naturally ion-conducting segments (e.g., hydroxyl) holds promise for sustainable batteries.

View Article and Find Full Text PDF

Coordination-Driven Crosslinking Electrolytes for Fast Lithium-Ion Conduction and Solid-State Battery Applications.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Rechargeable batteries paired with lithium (Li) metal anodes are considered to be promising high-energy storage systems. However, the use of highly reactive Li metal and the formation of Li dendrites during battery operation would cause safety concerns, especially with the employment of highly flammable liquid electrolytes. Herein, a general strategy by engineering coordination-driven crosslinking networks is proposed to achieve high-performance solid polymer electrolytes.

View Article and Find Full Text PDF

Structural characterization of cage clusters assembled borophene and implication for cathode electrocatalysts in Li-O batteries.

J Colloid Interface Sci

November 2024

Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China. Electronic address:

Article Synopsis
  • Researchers have successfully created quasi-freestanding bilayer borophene, which shows great potential for micro-electronic applications due to its metallic properties.
  • The study uses various simulation methods, including STM and TEM imaging, to explore and characterize the structure and electronic properties of borophene, helping to identify different phases.
  • Cluster assembled borophene is proposed as an effective cathode material for Li-O batteries, demonstrating lower overpotential in the oxygen evolution reaction compared to the oxygen reduction reaction, linked to the interaction strength of lithium intermediates with boron sheets.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!