Owing to its abundance, high gravimetric energy density, and environmental friendliness, hydrogen is a promising renewable energy to replace fossil fuels. One of the most prominent routes toward hydrogen acquisition is water splitting, which is currently bottlenecked by the sluggish kinetics of oxygen evolution reaction (OER). Numerous of electrocatalysts have been developed in the past decades to accelerate the OER process. Up to now, the first-row transition metal based compounds are in pole position under alkaline conditions, which have become subjects of extensive studies. Recently, significant advances in providing compelling catalytic performance as well as exploring their catalytic mechanisms have been achieved in this area. In this review, we summarized the fundamentals and recent progresses in first-row transition metal based OER catalysts, with special emphasis on the pathways of promoting catalytic performance by concrete strategies. New insight into material design, particularly the role of experimental approaches in the electrocatalytic performance and reaction mechanisms of OER are expected to be provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201701931 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.
View Article and Find Full Text PDFDalton Trans
January 2025
National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions.
View Article and Find Full Text PDFNat Chem
January 2025
Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
We present the synthesis of metal oxide coordination networks based on Preyssler-type polyoxoanions ([NaPWO] and [NaPMoWO]) bridged with metal-aquo complexes ([M(HO)], M = Co, Ni, Zn, Y), induced by electrochemical reduction. Networks bridged with first-row transition metals are isostructural with a previously reported Co-bridged structure, while the Y-bridged structure is new. All networks feature an uncommon binding motif of the metal cation to the oxygen atoms at cap positions, which we hypothesize is due to increased electron density at the cap upon reduction.
View Article and Find Full Text PDFChem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!