Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13728DOI Listing

Publication Analysis

Top Keywords

leaf rolling
20
cell wall
16
wall formation
16
modulates leaf
12
leaf
9
integrity water
8
water homeostasis
8
loss cld1/srl1
8
cld1/srl1 function
8
leaf epidermis
8

Similar Publications

Eyespot peek-a-boo: Leaf rolls enhance the antipredator effect of insect eyespots.

J Anim Ecol

December 2024

Field Museum of Natural History, Chicago, Illinois, USA.

Animal colour patterns are often accompanied by specific, synergistic behaviours to most effectively defend prey against visual predators. Given the inherent context-dependence of colour perception, understanding how these colour-behaviour synergies function in a species' natural environment is crucial. For example, refuge-building species create a unique visual environment where most (or all) of the body is obscured unless closely inspected.

View Article and Find Full Text PDF

First report of saffron-associated mastrevirus 1 from saffron in Iran.

Plant Dis

December 2024

CIRAD, BIOS, UMR BGPI TA A-54/K Campus International de Montferrier-Baillarguet, Montpellier, Hérault, France, 34398;

In spring 2022, 40 leaf samples of saffron plants harboring a wide variety of symptoms, including curling, yellowing, mosaic, dwarfing and leaf malformation were collected from three Khorasan provinces in Iran. These samples were processed using the virion-associated nucleic acid-based metagenomics approach (Moubset et al., 2022).

View Article and Find Full Text PDF

Convergent evolution: What do cats, catnip, aphids, and mosquitoes have in common?

J Biosci

December 2024

Editor-in-Chief, Journal of Biosciences,Centre for Ecological Sciences, Indian Institute of Science,Bengaluru 560012,India.

The well-known English naturalist John Ray wrote more than 200 years ago about the curious reaction of cats to a plant in the mint or Lamiaceae family, the catnip plant . Ray even wrote a short verse about the relationship between cats and catnip: 'If you set it the cats will eat it; If you sow it the cats can't know it' (Considine 2016). When leaves of this plant are bruised and release their volatiles, cats react by attempting to rub and roll over on the leaves, seeming to be in a state of ecstasy.

View Article and Find Full Text PDF

In India, plants from the non-cultivated, horticultural, and agricultural categories are commonly infected with various begomoviruses, most of which produce yellow mosaic, bright yellow mosaic, or curling symptoms on leaves. In this study, the complete genome of a new bipartite begomovirus causing yellow mosaic disease (YMD) in butterfly pea (Clitoria ternatea L.) was characterized using rolling-circle amplification followed by restriction digestion, cloning, and sequencing to obtain the full-length DNA-A (2727 nt) and DNA-B (2648 nt) sequences.

View Article and Find Full Text PDF

As a consequence of COI barcoding hundreds of reared specimens of what appeared to be Leurus caeruliventris, a parasitoid of leaf-rolling Crambidae (Lepidoptera) from the Area de Conservación Guanacaste, northwestern Costa Rica, and matching them with their host caterpillars and morphological traits, we describe ten new sympatric species and redescribe L. caeruliventris. The new species, authored by Zuñiga & Valerio, are: Leurus billeberhardi, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!