Structural asymmetry in the eukaryotic Elongator complex.

FEBS Lett

Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.

Published: February 2018

Nucleoside modifications in tRNA anticodons regulate ribosome dynamics during translation elongation and, thereby, fine-tune global protein synthesis rates. The highly conserved eukaryotic Elongator complex conducts specific C5-substitutions in tRNA wobble base uridines. It harbors two copies of each of its six individual subunits, which are all equally important for its activity. Here, we summarize recent developments focusing on the architecture of the Elongator complex, showing an asymmetric subunit arrangement, and its functional implications. In addition, we discuss the role of its proposed active site, its individual subunits and temporarily associated regulatory factors. Finally, we aim to provide mechanistic explanations for the link between mutations in Elongator subunits and the onset of several severe human pathologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.12865DOI Listing

Publication Analysis

Top Keywords

elongator complex
12
eukaryotic elongator
8
individual subunits
8
structural asymmetry
4
asymmetry eukaryotic
4
elongator
4
complex nucleoside
4
nucleoside modifications
4
modifications trna
4
trna anticodons
4

Similar Publications

Morphological and phylogenetic analyses reveal two new species of the (Hypocreales, Nectriaceae) species complex in China.

MycoKeys

January 2025

The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China.

The species complex (FFSC) encompasses a diverse array of more than 80 phylogenetic species with both phytopathological and clinical importance. A stable taxonomy is crucial for species in the FFSC due to their economical relevance. Fungal strains used in this study were obtained from and , collected from Beijing and Shaanxi Province.

View Article and Find Full Text PDF

Introduction: POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2].

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!