RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB or RelB) were adoptively transferred into RelB mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB) and heterozygous (RelB) controls. RelB mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB CD11c DCs into RelB mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vβ13 T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2017-0242OCDOI Listing

Publication Analysis

Top Keywords

relb mice
16
relb
15
development spontaneous
8
allergic airway
8
airway inflammation
8
relb development
8
dcs relb
8
pulmonary inflammation
8
t-helper cell
8
cell type
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!