Research on neuronal connectivity in the cerebral cortex has focused on the existence and strength of synapses between neurons, and their location on the cell bodies and dendrites of postsynaptic neurons. The synaptic architecture of individual presynaptic axonal trees, however, remains largely unknown. Here we used dense reconstructions from three-dimensional electron microscopy in rats to study the synaptic organization of local presynaptic axons in layer 2 of the medial entorhinal cortex, the site of grid-like spatial representations. We observe path-length-dependent axonal synapse sorting, such that axons of excitatory neurons sequentially target inhibitory neurons followed by excitatory neurons. Connectivity analysis revealed a cellular feedforward inhibition circuit involving wide, myelinated inhibitory axons and dendritic synapse clustering. Simulations show that this high-precision circuit can control the propagation of synchronized activity in the medial entorhinal cortex, which is known for temporally precise discharges.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature24005DOI Listing

Publication Analysis

Top Keywords

medial entorhinal
12
entorhinal cortex
12
axonal synapse
8
synapse sorting
8
excitatory neurons
8
neurons
5
sorting medial
4
cortex
4
cortex neuronal
4
neuronal connectivity
4

Similar Publications

Objective: Study of neuroimaging changes according to MRI morphometry and their comparison with the structure and severity of cognitive impairment (CI) in patients with Alzheimer's disease (AD) and primary open-angle glaucoma (POAG).

Material And Methods: The study involved 90 patients who were divided into two equal groups of 45 people and who early had diagnosis of AD (group 1; median age - 71 [66; 77] years) and POAG (group 2; median age - 68 [64; 77] years). 71] years).

View Article and Find Full Text PDF

Upregulated excitatory amino acid transporter 1 (EAAT1) expression in the human medial temporal lobe in Alzheimer's disease.

Neuroscience

December 2024

Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, New Zealand; Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland. Electronic address:

Alzheimer's disease (AD) is a growing health problem worldwide, particularly in the developed world due to an ageing population. Glutamate excitotoxicity plays a major role in the pathophysiology of AD, and glutamate re-uptake is controlled by excitatory amino acid transporters (EAATs). The EAAT2 isoform is the predominant transporter involved in glutamate reuptake, therefore EAAT1 has not been the focus of AD research.

View Article and Find Full Text PDF

Episodic memory is subserved by interactions between entorhinal cortex (EC) and hippocampus. Within EC, a functional dissociation has been proposed for medial (MEC) and lateral (LEC) subregions, whereby, MEC processes spatial information while LEC processes information about objects and their location in space. Most of these studies, however, used classical methods which lack both spatial and temporal specificity, thus, the precise role of MEC/LEC in memory could use further clarification.

View Article and Find Full Text PDF

Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism.

Cyborg Bionic Syst

September 2024

Chair of Robotics, Artificial Intelligence and Real-time Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.

The medial entorhinal cortex of rodents is known to contain grid cells that exhibit precise periodic firing patterns based on the animal's position, resulting in a distinct hexagonal pattern in space. These cells have been extensively studied due to their potential to unveil the navigational computations that occur within the mammalian brain and interesting phenomena such as so-called grid cell distortions have been observed. Previous neuronal models of grid cells assumed their firing fields were independent of environmental boundaries.

View Article and Find Full Text PDF

Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!