AI Article Synopsis

  • Metal oxide thin films are critical in tech applications, often utilizing multiple metal components to tailor their properties.
  • Recent findings indicate that precursor solutions do not always yield uniform thin films, as shown by nonuniform electron density in lanthanum zirconium oxide (LZO) films.
  • An inhomogeneous distribution of metals, with La accumulating at the surface and Zr evenly spread, does not adversely affect the dielectric properties of multilayer films, suggesting that they may be advantageous in device fabrication.

Article Abstract

Metal oxide thin films are ubiquitous in technological applications. Often, multiple metal components are used to achieve desired film properties for specific functions. Solution deposition offers an attractive route for producing these multimetal oxides because it allows for careful control of film composition through the manipulation of precursor stoichiometry. Although it has been generally assumed that homogeneous precursor solutions yield homogeneous thin films, we recently reported evidence of nonuniform electron density profiles in aqueous-deposited films. Herein, we show that nonuniform electron densities in lanthanum zirconium oxide (LZO) thin films are the result of inhomogeneous distributions of metal components. Specifically, La aggregates at the film surface, whereas Zr is relatively evenly distributed throughout single-layer films. This inhomogeneous metal distribution persists in stacked multilayer films, resulting in La-rich interfaces between the sequentially deposited layers. Testing of metal-insulator-semiconductor devices fabricated from single and multilayer LZO films shows that multilayer films have higher dielectric constants, indicating that La-rich interfaces in multilayer films do not detrimentally impact film properties. We attribute the enhanced dielectric properties of multilayer films to greater condensation and densification relative to single-layer films, and these results suggest that multilayer films may be preferred for device applications despite the presence of layering artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b12462DOI Listing

Publication Analysis

Top Keywords

multilayer films
20
thin films
16
films
13
oxide thin
8
metal components
8
film properties
8
nonuniform electron
8
single-layer films
8
la-rich interfaces
8
films multilayer
8

Similar Publications

Influence of Different Measuring Backgrounds on the Classification of Multilayer Polyolefin Films Using a Near-Infrared Handheld Spectrometer.

Appl Spectrosc

December 2024

Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversitaet Leoben, Leoben, Austria.

The low thickness of plastic films poses a challenge when using near-infrared (NIR) spectroscopy as it affects the spectral quality and classification. This research focuses on offering a solution to the challenge of classifying multilayer plastic film materials with a focus on polyolefin multilayer plastics. It presents the importance of spectral quality on accurate classification.

View Article and Find Full Text PDF

High contact resistance remains the primary obstacle that hinders further advancements of organic semiconductors (OSCs) in electronic circuits. While significant effort has been directed toward lowering the energy barrier at OSC/metal contact interfaces, approaches toward reducing another major contributor to overall contact resistance - the bulk resistance - have been limited to minimizing the thickness of OSC films. However, the out-of-plane conductivity of OSCs, a critical aspect of bulk resistance, has largely remained unaddressed.

View Article and Find Full Text PDF

All-dielectric metasurface (ADM) absorbers driven by quasi-bound states in the continuum (BIC) are critical for high-performance optoelectronic devices due to their ability to offer high -factor absorption. However, these all-dielectric metasurfaces usually require the aid of degenerate critical coupling schemes or back-metal reflective layers to achieve high absorption, which often suffers from limitations such as sensitive geometrical parameters, ohmic losses, and low -factors. This work presents an ADM for high- near-perfect light absorption, which consists of double Si nanorods and SiO/TaO multilayers.

View Article and Find Full Text PDF

Polyvinylidene fluoride (PVDF) film, with high energy density and excellent mechanical properties, has drawn attention as an energy storage device. However, conduction loss in PVDF under high electric fields hinders improvement in efficiency due to electrode-limited and bulk-limited conduction. Well-aligned multilayer interfaces of two-dimensional (2D) nanocoatings can block charge injection, reducing electrode-limited conduction loss in dielectric polymers.

View Article and Find Full Text PDF

Pulmonary surfactant is a membranous complex that enables breathing dynamics at the respiratory surface. Extremely low values of surface tension are achieved at end-expiration thanks to a unique mixture of lipids and proteins. In particular, the hydrophobic surfactant proteins, specially the protein SP-B, are crucial for surfactant biophysical function, in order to provide the surfactant lipid matrix with the ability to form membranous multi-layered interfacial films that sustain optimal mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!