[Effect of oxymatrine on apoptosis of hippocampal neurons by p38/JNK signaling pathway].

Zhongguo Zhong Yao Za Zhi

School of Medicine, Nantong University, Nantong 226001, China.

Published: February 2017

To investigate the effect and mechanism of oxymatrine(OMT) on hippocampal neurons apoptosis. Effect of OMT on survival of hippocampal neurons was measured by MTT.Effect of OMT on LPS-induced lactate dehydrogenase(LDH) release rate in hippocampal neurons was measured by biochemical methods. Hoechst 33342 staining was used to observe the apoptotic morphology of hippocampal neurons.The mRNA expression levels of Bax, Bcl-2, and Caspase-3 were detected by Real-time quantitative PCR(RT-qPCR), and the protein expression levels of p38, p-p38, JNK, p-JNK, Bax, Bcl-2 and Caspase-3 were detected by Western blot.The results showed that, hippocampal neurons all grew well after treatment by different doses (0.37-6.0 g•L⁻¹) of OMT for 24 h. Stimulation from LPS increased the release of LDH(P<0.01), improved the JNK and p38 phosphorylation levels(P<0.01), increased the proportion of Bax/Bcl-2 and the expression of Caspase-3(P<0.01), and promoted the apoptosis of hippocampal neurons. OMT pretreatment could significantly reduce the release of LDH induced by LPS stimulation(P<0.05 or P<0.01), reduce the p38 and JNK phosphorylation, decrease the expression of Caspase-3 and Bax/Bcl-2(P<0.01), and diminish the apoptosis of hippocampal neurons.In conclusion, OMT could reduce the LPS-induced phosphorylation of p38 and JNK, down-regulate the Bax/Bcl-2 ratio and expression of Caspase-3, thus inhibiting apoptosis of hippocampal neurons. The mechanism may be associated with p38/JNK signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.2017.0020DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
20
neurons measured
8
expression levels
8
bax bcl-2
8
bcl-2 caspase-3
8
caspase-3 detected
8
hippocampal
6
neurons
5
[effect oxymatrine
4
oxymatrine apoptosis
4

Similar Publications

The hippocampus has a known role in learning and memory, with the ventral subregion supporting many learning tasks involving affective responding, including fear conditioning. Altered neuronal intrinsic excitability reflects experience-dependent plasticity that supports learning-related behavioral changes. Such changes have previously been observed in the dorsal hippocampus following fear conditioning, but little work has examined the effect of fear conditioning on ventral hippocampal intrinsic plasticity.

View Article and Find Full Text PDF

Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

View Article and Find Full Text PDF

Tau oligomers impair memory and synaptic plasticity through the cellular prion protein.

Acta Neuropathol Commun

January 2025

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Scaling of ventral hippocampal activity during anxiety.

J Neurosci

January 2025

Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.

The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!