Exposure of the gilthead seabream () to sediments contaminated with heavy metals down-regulates the gene expression of stress biomarkers.

Toxicol Rep

Fish innate immune system group. Department of Cell Biology & Histology, Faculty of Biology. Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain.

Published: February 2016

Heavy metals incidence in the aquatic environment and its accumulation in fish are under constant review. Gilthead seabream () specimens were exposed for two weeks to sediments highly concentrated in metals, collected at the Portman Bay (Murcia, Spain). The metals bioaccumulation was tested in liver, muscle and skin. The potential of the sediment exposure to induce variation of the stress biomarkers genes was conducted in liver and skin. Results revealed that sediments were highly contaminated with metals. However, following 2 weeks exposure to the sediments, Cd accumulates only in liver. Interestingly, the expression of the genes and were significantly down-regulated in skin. Nevertheless, gene was up-regulated only in liver. Results uphold that the stress response magnitude was organ-dependent and the skin was the most responsive tissue to metal stress conditions. These results suggest that skin should be considered as target organ for biomarkers analysis in fishes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615830PMC
http://dx.doi.org/10.1016/j.toxrep.2016.02.006DOI Listing

Publication Analysis

Top Keywords

gilthead seabream
8
heavy metals
8
stress biomarkers
8
sediments highly
8
metals
5
skin
5
exposure gilthead
4
sediments
4
seabream sediments
4
sediments contaminated
4

Similar Publications

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP).

View Article and Find Full Text PDF

This study investigates the seasonal variations in the elemental composition of five economically valuable fish species from Bozcaada, North Aegean: red seabream (), gilthead seabream (), saddled seabream (), white seabream (), and common dentex (), with a focus on both essential minerals and toxic metals. Fish samples ( = 10 per species per season) were collected across four seasons, and their weights and lengths were recorded. The concentrations of elements such as calcium, potassium, magnesium, phosphorus, copper, iron, manganese, zinc, chromium, nickel, selenium, cadmium, and mercury were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().

View Article and Find Full Text PDF

One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by feeding a conventional feed rich in FM protein (FM diet) versus an experimental feed rich in plant protein (PP) and low FM inclusion (PP diet), in 20 different families of gilthead sea bream () was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!