Physicochemical and viscoelastic properties of honey from medicinal plants.

Food Chem

School of Science, RMIT University, Bundoora Campus, Bundoora, Vic 3083, Melbourne, Australia. Electronic address:

Published: February 2018

The present work investigated the physicochemical and structural properties of Tulsi, Alfalfa and two varieties of Manuka honey derived from medicinal plants. Chemical analysis yielded data on the content of reducing sugars (glucose and fructose) that dominate the honey matrix, and of the minor constituents of protein, phenols and flavonoids. Standard chemical assays were used to develop a database of water content, electrical conductivity, pH, ash content, visual appearance and colour intensity. Physicochemical characteristics were related to structural behaviour of the four honey types, as recorded by small-deformation dynamic oscillation in shear, micro- and modulated differential scanning calorimetry, wide angle X-ray diffraction and infrared spectroscopy. The preponderance of hydrogen bonds in intermolecular associations amongst monosaccharides in honey yields a semi-amorphous or semi-crystalline system. That allowed prediction of the calorimetric and mechanical glass transition temperatures that demarcate the passage from liquid-like to solid-like consistency at subzero temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2017.08.070DOI Listing

Publication Analysis

Top Keywords

medicinal plants
8
honey
5
physicochemical viscoelastic
4
viscoelastic properties
4
properties honey
4
honey medicinal
4
plants work
4
work investigated
4
investigated physicochemical
4
physicochemical structural
4

Similar Publications

The ASPARAGINE-RICH PROTEIN-LYST-INTERACTING PROTEIN5 complex regulates non-canonical AUTOPHAGY8 degradation in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.

The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Cannabis sativa L. is an important medicinal plant with high commercial value. In recent years, the research interest in cannabidiol (CBD) and terpene-rich cannabis has been rapidly expanding due to their high therapeutic potential.

View Article and Find Full Text PDF

Introduction And Objective: Rumex sanguineus, a traditional medicinal plant of the Polygonaceae family, is gaining popularity as an edible resource. However, despite its historical and nutritional significance, its chemical composition remains poorly understood. To deepen the understanding of the of Rumex sanguineus composition, an in-depth analysis using non-targeted, mass spectrometry-based metabolomics was performed.

View Article and Find Full Text PDF

Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023).

Nat Prod Bioprospect

January 2025

International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.

Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications, particularly in oncology. This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023. With a focus on recent research findings, the review explores the rich biodiversity of marine organisms, including sponges, corals, algae, and microorganisms, which have yielded numerous compounds exhibiting promising anticancer properties.

View Article and Find Full Text PDF

Hydrogen Bond-Mediated Transition Metal-Free Alcoholysis of Primary Amides to Access Esters.

J Org Chem

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.

An efficient hydrogen bond-mediated alcoholysis of primary amides was disclosed using diethyl phosphonate (DEP) as a catalyst. In this process, a wide range of primary amides and alcohols were tested and smoothly transformed to corresponding esters in moderate to good yields. This novel strategy features transition metal-free, broad substrate scope and a hydrogen bond-mediated one-pot pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!