The purpose of this manuscript is to review the role of endothelial glycocalyx (EG) in the field of critical and perioperative medicine and to discuss possible future directions for investigations in this area. Under physiological conditions, EG has several well-defined functions aimed to prevent the disruption of vessel wall integrity. Under pathological conditions, the EG represent one of the earliest sites of injury during inflammation. EG structure and function distortion contribute to organ dysfunction related to sepsis, trauma, or global ischemia of any origin. Discovering new therapeutic approaches (either pharmacological or non-pharmacological) aimed to protect the EG against injury represents a promising direction in clinical medicine. Further, the currently-used common interventions in the acutely ill - fluids, blood products, nutritional support, organ-supporting techniques (e.g. continuous renal replacement therapy, extracorporeal circulation), temperature modulation and many others - should be re-evaluated during acute illness in terms of their EG "friendliness". To assess new therapies that protect the EG, or to evaluate the effect of currently-used interventions on EG integrity, a relevant marker or method to determine EG damage is needed. Such marker or method should be available to clinicians within hours, preferably in the form of a point-of-care test at the bedside. Collaborative research between clinical disciplines and laboratory medicine is warranted, and targeting the EG represents major challenges for both.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408363.2017.1379943DOI Listing

Publication Analysis

Top Keywords

endothelial glycocalyx
8
laboratory medicine
8
marker method
8
targeting endothelial
4
glycocalyx acute
4
acute critical
4
critical illness
4
illness challenge
4
challenge clinical
4
clinical laboratory
4

Similar Publications

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.

View Article and Find Full Text PDF

Objectives: A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in patients undergoing on-pump surgery with an extended CPB.

Methods: Fifty-one patients undergoing cardiac surgical procedures were divided into two groups based on the intraoperative CPB duration: (i) normal CPB (<180 min, = 23) and (ii) prolonged CPB (>180 min, = 28).

View Article and Find Full Text PDF

Sphingosine-1-Phosphate, a Marker of Endothelial Injury and Disease Severity in Preeclampsia.

Hypertension

January 2025

Division of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Sweden. (C.E., F.P., L.E., S.R.H.).

Background: Preeclampsia is a hypertensive pregnancy disorder marked by endothelial damage. Healthy endothelium is covered by a protective glycocalyx layer, which, when degraded, releases detectable products into the blood. Sphingosine-1-phosphate (S1P) is a cardiovascular biomarker involved in glycocalyx preservation, linked to placentation and preeclampsia development.

View Article and Find Full Text PDF

Diosmetin alleviates TNFα-induced liver inflammation by improving liver sinusoidal endothelial cell dysfunction.

Biomed Pharmacother

January 2025

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, Kraków 30-387, Poland. Electronic address:

Sterile inflammation contributes to the development of many liver diseases including non-alcoholic fatty liver disease. Tumor necrosis factor alpha (TNFα) is a key cytokine driving liver inflammation primarily through pro-inflammatory activation of liver sinusoidal endothelial cells (LSEC). The knowledge of whether modulating LSEC activation can alleviate liver inflammation is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!