Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTS neurons) were shown to drive sodium appetite. Here we investigate the basis for NTS neuron activation, identify the circuit by which NTS neurons drive appetite, and uncover an interaction between the NTS circuit and ATII signaling. NTS neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Na1.5 channels. Remarkably, NTS neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTS neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTS neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637454 | PMC |
http://dx.doi.org/10.1016/j.neuron.2017.09.014 | DOI Listing |
Cell Host Microbe
December 2024
Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
Approximately 20% of patients with shingles develop postherpetic neuralgia (PHN). We investigated the role of gut microbiota in shingle- and PHN-related pain. Patients with shingles or PHN exhibited significant alterations in their gut microbiota with microbial markers predicting PHN development among patients with shingles.
View Article and Find Full Text PDFNeurosci Bull
December 2024
Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Key Laboratory of Immune Response and Immunotherapy, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
In the face of constantly changing environments, the central nervous system (CNS) rapidly and accurately calculates the body's needs, regulates feeding behavior, and maintains energy homeostasis. The arcuate nucleus of the hypothalamus (ARC) plays a key role in this process, serving as a critical brain region for detecting nutrition-related hormones and regulating appetite and energy homeostasis. Agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the ARC are core elements that interact with other brain regions through a complex appetite-regulating network to comprehensively control energy homeostasis.
View Article and Find Full Text PDFJ Comp Neurol
December 2024
Department of Neurology, University of Iowa, Iowa City, Iowa, USA.
The nucleus of the solitary tract (NTS) receives visceral information and regulates appetitive, digestive, and cardiorespiratory systems. Within the NTS, diverse processes operate in parallel to sustain life, but our understanding of their cellular composition is incomplete. Here, we integrate histologic and transcriptomic analysis to identify and compare molecular features that distinguish neurons in this brain region.
View Article and Find Full Text PDFBr J Pharmacol
December 2024
Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
Neuroscience
November 2024
Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China. Electronic address:
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!