Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

Neuron

Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

Published: September 2017

Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626823PMC
http://dx.doi.org/10.1016/j.neuron.2017.09.021DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
8
expression loci
8
long-term plasticity
8
postsynaptic response
8
response statistics
8
long-term
5
transmission optimization
4
optimization predicts
4
expression
4
predicts expression
4

Similar Publications

Dissecting SNARE-Mediated Exocytosis in RBL-2H3 Mast Cells.

Methods Mol Biol

January 2025

Center for Molecular and Cellular Biosciences, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA.

SNARE-dependent mast cell (MC) exocytosis causes the release of a wide variety of mediators with important physiological/pathological consequences. Unlike synaptic transmission in the brain, which relies primarily on one set of exocytic SNAREs (i.e.

View Article and Find Full Text PDF

Molecular Dynamics Simulations of the SNARE Complex Interacting with Synaptotagmin, Complexin, and Lipid Bilayers.

Methods Mol Biol

January 2025

Departments of Neurology, and Anatomy and Cell Biology, Wayne State University School of Medicine, University Health Center, Detroit, MI, USA.

Molecular dynamics (MD) simulations enable in silico investigation of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE bundle forming the complex with the neuronal proteins Synaptotagmin-1 (Syt1) and Complexin (Cpx). Syt1 is the synaptic vesicle (SV) protein that serves as the neuronal calcium sensor and triggers synaptic fusion upon calcium binding, and this process is promoted and accelerated by Cpx.

View Article and Find Full Text PDF

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!