Transition state search is at the center of multiple types of computational chemical predictions related to mechanistic investigations, reactivity and regioselectivity predictions, and catalyst design. The process of finding transition states in practice is, however, a laborious multistep operation that requires significant user involvement. Here, we report a highly automated workflow designed to locate transition states for a given elementary reaction with minimal setup overhead. The only essential inputs required from the user are the structures of the separated reactants and products. The seamless workflow combining computational technologies from the fields of cheminformatics, molecular mechanics, and quantum chemistry automatically finds the most probable correspondence between the atoms in the reactants and the products, generates a transition state guess, launches a transition state search through a combined approach involving the relaxing string method and the quadratic synchronous transit, and finally validates the transition state via the analysis of the reactive chemical bonds and imaginary vibrational frequencies as well as by the intrinsic reaction coordinate method. Our approach does not target any specific reaction type, nor does it depend on training data; instead, it is meant to be of general applicability for a wide variety of reaction types. The workflow is highly flexible, permitting modifications such as a choice of accuracy, level of theory, basis set, or solvation treatment. Successfully located transition states can be used for setting up transition state guesses in related reactions, saving computational time and increasing the probability of success. The utility and performance of the method are demonstrated in applications to transition state searches in reactions typical for organic chemistry, medicinal chemistry, and homogeneous catalysis research. In particular, applications of our code to Michael additions, hydrogen abstractions, Diels-Alder cycloadditions, carbene insertions, and an enzyme reaction model involving a molybdenum complex are shown and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.7b00764DOI Listing

Publication Analysis

Top Keywords

transition state
28
state search
12
transition states
12
transition
9
reactants products
8
state
7
reaction
5
automated transition
4
search application
4
application diverse
4

Similar Publications

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Background/objectives: For low- and middle- income country (LMIC) settings, a global nutrition transition is rapidly emerging as diets shift, resulting in a dual burden of malnutrition. High quality dietary intake data for these populations is essential to understand dietary patterns contributing to these nutrition issues. New technology is emerging to address dietary assessment challenges; however, it is unknown how researchers conducting studies with LMIC populations or under-served groups in high-income countries adopt technology-assisted methods.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.

View Article and Find Full Text PDF

Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications.

Molecules

January 2025

Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.

An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at = 298.15 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!