Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

PLoS One

Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Higashihiroshima, Hiroshima, Japan.

Published: October 2017

Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5619750PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185427PLOS

Publication Analysis

Top Keywords

qpcr assays
20
phytoplasmas xylella
16
xylella spp
12
dual priming
8
universal qpcr
8
qpcr
7
assays
6
phytoplasmas
5
xylella
5
universal
4

Similar Publications

Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a.

View Article and Find Full Text PDF

Unlabelled: Respiratory tract infections are major global health issues that require rapid and accurate diagnostic methods. Multiplex quantitative PCR (qPCR) is commonly used for pathogen detection in respiratory samples. However, the optimal specimen selection for detecting bacterial pathogens is not well-explored.

View Article and Find Full Text PDF

Developing a novel TaqMan qPCR assay for optimizing Pullorum detection in chickens.

Vet Q

December 2025

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.

Pullorum, the causative agent of pullorum disease, posing a significant threat to the global production of poultry meat and eggs. However, existing detection methods have substantial limitations in efficiency and accuracy. Herein, we developed a genomic deletion-targeted TaqMan qPCR assay for identification of Pullorum, enabling precise differentiation from other serovars.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and is the third leading cause of cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a newly discovered form of regulated cell death.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) treatment on the miRNA and mRNA profiles of stem cell-derived extracellular vesicles (EVs). Specifically, it sought to identify key miRNAs and their target mRNAs associated with enhanced therapeutic efficacy in LIPUS-treated stem cell-derived EVs.

Methods: Utilizing miRNA deep-sequencing data from the Gene Expression Omnibus database, differential gene analysis was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!