AI Article Synopsis

  • A millimeter-sized whispering-gallery resonator made from neodymium-doped lithium niobate can both lase and perform self-frequency doubling.
  • A simple and inexpensive 808-nm laser diode is used to pump the neodymium ions, leading to laser output around 1.08 μm and producing green light through frequency doubling.
  • This innovative technique is a first for combining lasing and frequency conversion in one high-Q resonator and could be applied to various materials and nonlinear optical processes.

Article Abstract

Lasing and self-frequency doubling are achieved in a millimeter-sized laser-active whispering-gallery resonator made of neodymium-doped lithium niobate. A low-cost 808-nm laser diode without external frequency stabilization is sufficient to pump the neodymium ions. Laser oscillation around 1.08 μm drives a frequency-doubling process within the same cavity providing green light. The electrical-optical efficiency of the system reaches up to 2×10. To the best of our knowledge, this is the first demonstration of combining lasing and χ frequency conversion in a single high-Q whispering-gallery resonator. This approach is general and can be applied to other materials and other nonlinear optical processes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.002627DOI Listing

Publication Analysis

Top Keywords

whispering-gallery resonator
12
self-frequency doubling
8
laser-active whispering-gallery
8
doubling laser-active
4
resonator lasing
4
lasing self-frequency
4
doubling achieved
4
achieved millimeter-sized
4
millimeter-sized laser-active
4
resonator neodymium-doped
4

Similar Publications

Coordination-Defect-Driven Construction of Responsive Pure-MOF Microspheres for Switchable Mode-Dependent Anticounterfeiting Labels.

ACS Appl Mater Interfaces

December 2024

Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Luminescent metal-organic frameworks (MOFs) with exceptional dynamics and diverse active sites possess tremendous potential in information security and anticounterfeiting applications. However, traditional MOF systems are based on broadband spectral signals with spectrum overlap, which easily leads to low-resolution signal identification, compromising the overall security level. Here, we report the coordination-defect-induced amorphous pure-MOF microsphere with switchable whispering-gallery-mode (WGM) signals as a mode-dependent security platform.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Optically Pumped and Electrically Switchable Microlaser Array Based on Elliptic Deformation and Q-Attenuation of Organic Droplet Oscillators.

Adv Mater

December 2024

Department of Materials Science, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

Conventional laser panel displays are developed through the mass integration of electrically pumped lasers or through the incorporation of a beam steering system with an array of optically pumped lasers. Here a novel configuration of a laser panel display consisting of a non-steered pumping beam and an array of electrically Q-switchable lasers is reported. The laser oscillator consists of a robust, self-standing, and deformable minute droplet that emits laser through Whispering-Gallery Mode resonance when optically pumped.

View Article and Find Full Text PDF

Wideband Tuning and Deep-Tissue Spectral Detection of Indium Phosphide Nano-Laser Particles.

bioRxiv

December 2024

Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, Massachusetts, 02139, USA.

Laser particles (LPs) emitting narrowband spectra across wide spectral ranges are highly promising for high-multiplex optical barcoding. Here, we present LPs based on indium phosphide (InP) nanodisks, operating in the near-infrared wavelength range of 740-970 nm. Utilizing low-order whispering gallery resonance modes in size-tuned nanodisks, we achieved an ultrawide color palette with 27% bandwidth utilization and nanometer-scale linewidth.

View Article and Find Full Text PDF

Penicillin G detection is of great significance in medical research and disease diagnosis. Liquid crystal (LC), as a branch of sensitive materials, has a broad application prospect in the field of biosensing. Herein, a liquid crystal-coated silica microbubble resonator (LC-MBR), with high sensitivity for penicillin G detection, has been proposed and demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!