We demonstrate high-contrast electromagnetically induced absorption (EIA) bright resonances on the D line of K39 with characteristics comparable to those of the electromagnetically induced transparency (EIT) dark resonances observed in the same conditions. EIA is produced by the interaction of a weak probe beam with the atomic ground state driven in a degenerate coherent superposition by either a co- or counter-propagating pump beam. We have obtained an order of magnitude increase of the EIA's contrast with respect to previous similar experiments, performed with other alkalis, without compromising its linewidth. Furthermore, we show that the magneto-optic resonances can be continuously tuned from EIT to EIA by changing the relative handedness of circular polarizations of pump and probe beams, or depending on whether they co- or counter-propagate. This opens new perspectives in the use of EIA in a broad range of physical domains and in a large wealth of potential applications in optics and photonics.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.42.002930DOI Listing

Publication Analysis

Top Keywords

electromagnetically induced
8
tunable polarization-controlled
4
polarization-controlled high-contrast
4
high-contrast bright
4
bright dark
4
dark coherent
4
resonances
4
coherent resonances
4
resonances potassium
4
potassium demonstrate
4

Similar Publications

Article Synopsis
  • This study investigates the biological changes in rabbit corneas caused by two light-activated corneal stiffening methods: riboflavin with UVA and WST11 with NIR.
  • Differentially expressed proteins were identified following treatments, showing RF-D/UVA affected cell metabolism and keratocyte differentiation, while WST-D/NIR influenced extracellular matrix regulation.
  • The findings reveal a metabolic shift towards glycolysis in RF-D/UVA treated corneas compared to normal respiration in WST-D/NIR treated corneas, highlighting the distinct biological effects of each treatment.
View Article and Find Full Text PDF

Background: Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats.

View Article and Find Full Text PDF

Enhanced energy storage in antiferroelectrics via antipolar frustration.

Nature

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Dielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.

View Article and Find Full Text PDF

Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review.

Int J Biol Macromol

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:

Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.

View Article and Find Full Text PDF

AP39, a novel mitochondria-targeted hydrogen sulfide donor, promotes cutaneous wound healing in an in vivo murine model of acute frostbite injury.

Biomed Pharmacother

January 2025

Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Electronic address:

Frostbite injury refers to cold tissue injury which typically affects the peripheral areas of the body, and is associated with limb loss and high rates of morbidity. Historically, treatment options have been limited to supportive care, leading to suboptimal outcomes for affected patients. The pathophysiology of frostbite injury has been understood in recent years to share similarity with that of cold ischemia-reperfusion injury as seen in solid organ transplantation, of which mitochondria play an important contributing role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!