Eggs contaminated with Salmonella Enteritidis are leading sources of human salmonellosis, but Salmonella Heidelberg and Salmonella Typhimurium are also egg-associated pathogens. The management practices and housing facilities characterizing different systems for housing commercial egg flocks can influence Salmonella persistence and transmission. Animal welfare aspects of poultry housing have been widely debated, but their food safety ramifications are not thoroughly understood. The present study assessed the effects of two different bird stocking densities on the frequency and duration of fecal shedding of strains of Salmonella Heidelberg and Salmonella Typhimurium in groups of experimentally infected laying hens housed in colony cages enriched with perching and nesting areas. In separate trials, laying hens were distributed into two groups housed in enriched colony cages at stocking densities of 648 and 973 cm/bird, and a third group was housed in conventional cages at 648 cm/bird. All hens were orally inoculated with doses of 10 colony-forming units (CFU) of either Salmonella Heidelberg or Salmonella Typhimurium. At eight weekly postinoculation intervals, samples of voided feces were collected from beneath each cage and cultured to detect Salmonella. Fecal shedding of Salmonella Heidelberg continued for 8 wk in all housing groups, but Salmonella Typhimurium shedding ceased after as little as 5 wk in enriched colony cages at low stocking density. After Salmonella Heidelberg infection, the overall frequency of positive fecal cultures for all sampling dates combined was significantly (P < 0.05) greater from either conventional cages (51.0%) or enriched colony cages (46.5%) at high stocking density than from enriched colony cages at low stocking density (33.3%). No significant differences in Salmonella Typhimurium fecal isolation were identified between housing groups. These results demonstrate that stocking density can affect intestinal colonization and fecal shedding in laying hens for some (but not necessarily all) Salmonella serovars or strains.

Download full-text PDF

Source
http://dx.doi.org/10.1637/11635-032517-RegRDOI Listing

Publication Analysis

Top Keywords

colony cages
24
enriched colony
20
salmonella heidelberg
20
salmonella typhimurium
20
fecal shedding
16
laying hens
16
stocking density
16
salmonella
15
stocking densities
12
heidelberg salmonella
12

Similar Publications

Relative humidity (RH) is measured in vivaria with a broad range to accommodate seasonal fluctuations. It is assumed that measurements in the room (macroenvironment) reflect those in the cage (microenvironment). However, there is limited data comparing RH in the macroenvironment to the microenvironment and how the mice may be affected by variations in RH that fall within husbandry recommendations.

View Article and Find Full Text PDF

Bee cups 2.0: P-cups as single-use cages for honey bee (Hymenoptera: Apidae) experiments.

J Insect Sci

November 2024

United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD 20705, USA.

Honey bees and other pollinators face threats from pesticides, imperfect nutrition, and a diverse set of parasites and pathogens. Honey bees are also a research model for development, social behavior, microbiology, and aging. Tackling these questions requires a mix of in-hive and controlled laboratory experiments.

View Article and Find Full Text PDF

Automated home cage monitoring of an aging colony of mice-Implications for welfare monitoring and experimentation.

Front Neurosci

October 2024

Respiratory Immunology Biology Unit, GlaxoSmithKline, Stevenage, United Kingdom.

Introduction: Our understanding of laboratory animal behavior and the implications of husbandry activities on their wellbeing remains incomplete. This is especially relevant with an aging colony as their activity patterns may change as they mature. Home Cage Monitoring (HCM) provides valuable insights into mouse activity within the animal's own environment and can shed light on acclimatization periods and responses to husbandry activities such as cage changing.

View Article and Find Full Text PDF

Exposure to constant artificial light alters honey bee sleep rhythms and disrupts sleep.

Sci Rep

November 2024

School of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Artificial light at night (ALAN) changes animal behavior in multiple invertebrates and vertebrates and can result in decreased fitness. However, ALAN effects have not been studied in European honey bees (Apis mellifera), an important pollinator in which foragers show strong circadian rhythmicity. Colonies can be exposed to ALAN in swarm clusters, when bees cluster outside the nest on hot days and evenings, and, in limited cases, when they build nests in the open.

View Article and Find Full Text PDF

Mouse kidney parvovirus (MKPV) infection can cause significant morbidity and mortality by inducing moderate to severe inclusion body nephropathy and kidney fibrosis in aged immunodeficient mice. However, MKPV infection in immunocompetent mice is associated with histopathologic findings ranging from absent to minimal or moderate lymphoplasmacytic interstitial nephritis without inclusion body in most cases. We surveyed the prevalence of MKPV via PCR from August 2019 through January 2021, using feces, kidneys, and livers collected and pooled from 2 sentinel mice [Crl:CD1(ICR)] (CD1) per surveillance cage (a total of 212 cages).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!