When object A moves adjacent to a stationary object, B, and in that instant A stops moving and B starts moving, people irresistibly see this as an event in which A causes B to move. Real-world causal collisions are subject to Newtonian constraints on the relative speed of B following the collision, but here we show that perceptual constraints on the relative speed of B (which align imprecisely with Newtonian principles) define two categories of causal events in perception. Using performance-based tasks, we show that triggering events, in which B moves noticeably faster than A, are treated as being categorically different from launching events, in which B does not move noticeably faster than A, and that these categories are unique to causal events (Experiments 1 and 2). Furthermore, we show that 7- to 9-month-old infants are sensitive to this distinction, which suggests that this boundary may be an early-developing component of causal perception (Experiment 3).

Download full-text PDF

Source
http://dx.doi.org/10.1177/0956797617719930DOI Listing

Publication Analysis

Top Keywords

causal perception
8
constraints relative
8
relative speed
8
causal events
8
noticeably faster
8
causal
5
categories constraints
4
constraints causal
4
perception object
4
object moves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!