Objective To investigate the association between the polymorphism of C-689T in the peroxisome proliferator-activated receptor-γ2 (PPARγ2) promoter and coronary heart disease (CHD). Methods This case-controlled study was conducted in nondiabetic Chinese Han people, which enrolled 455 patients with CHD (cases) and 693 subjects without CHD (controls). Data of clinical indexes were collected, including height, body weight, waist circumstance, systolic blood pressure (SBP), diastolic blood pressure (DBP), smoking, drinking, physical activity, as well as body mass index (BMI). Fasting blood glucose (FBG), plasma total cholesterol (TC) and triglyceride (TG) levels were measured. Polymerase chain reaction-restricted fragments length polymorphism (PCR-RFLP) was used to determine the PPARγ2 promoter C-689→T substitution. The genotype distribution of PPARγ2 promoter C-689T, allelic frequency, clinical indexes, and laboratorial measurements were compared between the two groups. The effect of genotype on the risk of CHD was assessed using univariate and multivariate regression model. Results The genotype frequencies of CC, CT and TT in PPARγ2 promoter C-689T were 89.7%, 9.9% and 0.4% in the case group, and 93.1%, 6.6% and 0.3% in the control group, respectively (CC vs. CT+TT, χ= 6.243, P=0.041). Carriers of -689T allele (n=95) had significantly higher TC level than non-carriers (n=1053) (5.12±1.26 vs. 4.76±1.22 mmol/L, P=0.001). Male carriers of -689T allele (n=51) were significantly higher in waist circumference, body weight, TC and TG than male non-carriers (n=656) (all P<0.05). In subjects whose BMI was over 25 kg/m, carriers of -689T allele (n=82) had significantly higher levels of waist circumference, BMI, SBP and TC than non-carriers (n=231) (all p<0.05). The -689T allele was an independent risk factor for CHD (OR=1.668, 95%CI: 1.031-2.705, P=0.037) after adjusting for age, gender, waist circumference, body weight, BMI, smoking, physical activities, SBP, DBP, FBG, TC and TG level. Conclusion These data support the hypothesis that the -689T allele is associated with an increased risk of CHD, in Chinese Han people and correlates significantly with the profiles of CHD-related risk factors.

Download full-text PDF

Source
http://dx.doi.org/10.24920/J1001-9294.2017.042DOI Listing

Publication Analysis

Top Keywords

pparγ2 promoter
16
c-689t peroxisome
8
peroxisome proliferator-activated
8
proliferator-activated receptor-γ2
8
coronary heart
8
heart disease
8
han people
8
clinical indexes
8
body weight
8
blood pressure
8

Similar Publications

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!