Oxygen-Induced Ordering in Bulk Polycrystalline CuZnSnS by Sn Removal.

Inorg Chem

Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.

Published: October 2017

Solid-state nuclear magnetic resonance spectroscopy, X-ray diffraction, and Raman spectroscopy were used to show that CuZnSnS (CZTS) bulk solids grown in the presence of oxygen had improved cation ordering compared to bulk solids grown without oxygen. Oxygen was shown to have negligible solubility in the CZTS phase. The addition of oxygen resulted in the formation of SnO, leading to Sn-deficient CZTS. At the highest oxygen levels, other phases such as CuS and ZnS were observed. Beneficial ordering was only observed in samples produced with more than 2 at. % oxygen in the precursor materials but did not occur in samples designed with excess Sn and O. Thus, it is the removal of Sn and formation of Sn-deficient CZTS that improves ordering rather than the presence of SnO or O alone. These results indicate that using oxygen or air annealing to tailor the Sn content of CZTS followed by an etching step to remove SnO may significantly improve the properties of CZTS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b01777DOI Listing

Publication Analysis

Top Keywords

bulk solids
8
solids grown
8
sn-deficient czts
8
oxygen
7
czts
6
oxygen-induced ordering
4
ordering bulk
4
bulk polycrystalline
4
polycrystalline cuznsns
4
cuznsns removal
4

Similar Publications

Enhancing the rate of the oxygen evolution reaction (OER) by doping Ni-based electrocatalysts with guest metals other than Fe (V in this work) and the stability of the metal site should be assessed independent of Fe traces and in relation to the guest metal activity in solution. We examined OER catalysis and its sustainability at vanadium-doped nickel phosphide (NiP-V) independent of the role of Fe traces in alkaline. V was included in NiP by codeposition at cathodic bias (termed V) or postdeposition during the phosphide-to-hydroxide surface transformation at anodic bias in alkaline spiked with VCl (termed V).

View Article and Find Full Text PDF

Engineering Active Interfaces on the Surface of Porous Single-Crystalline TiO Monoliths for Enhanced Catalytic Activity and Stability.

Research (Wash D C)

January 2025

Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

The engineering design and construction of active interfaces represents a promising approach amidst numerous initiatives aimed at augmenting catalytic activity. Herein, we present a novel approach to incorporate interconnected pores within bulk single crystals for the synthesis of macroscopic porous single-crystalline rutile titanium oxide (R-TiO). The porous single crystal (PSC) R-TiO couples a nanocrystalline framework as the solid phase with pores as the fluid phase within its structure, providing unique advantages in localized structure construction and in the field of catalysis.

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!