Background: Thermoluminescent detectors, type MTS-6, containing isotope Li (lithium) are sensitive in the range of thermal neutron energy; the Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a Li isotope, by using Pu-Be neutron radiation source.
Material And Methods: In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma.
Results: The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block.
Conclusions: The calibration coefficient for the used batch of detectors is (6.80±0.42)×10 Sv/impulse. Med Pr 2017;68(6):705-710.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13075/mp.5893.00650 | DOI Listing |
Appl Radiat Isot
January 2025
Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.
Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Kyoto University Graduate School of Engineering, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan.
We aimed to explore the possibility of realizing a beam shaping assembly (BSA) driven by a 15-kW beam of 33-MeV electrons of an electron linear accelerator (LINAC) when a boronophenylalanine is adopted as a boron carrier. Simulation calculations were performed to design two types of BSAs driven by the small LINAC. The one was an experimental BSA, and the other was a high-performance BSA.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Institute of Nuclear Techniques of Budapest University of Technology and Economics, Műegyetem Rkp 9, 1111, Budapest, Hungary.
This study presents a compact accelerator-driven neutron source design with a thermal neutron port and an epithermal neutron port for Boron Neutron Capture Therapy (BNCT), based on 10 mA 2.5 MeV protons bombarding on a 100 μm thick disc-shaped Li target with a diameter of 10 cm. The moderator consists of 2 parts, the epithermal neutron moderator and the thermal neutron moderator.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Ultra-intense short-pulse lasers interacting with matter are capable of generating exceptionally bright secondary radiation sources. The short pulse duration (picoseconds to nanoseconds), small source size (sub-mm), and comparable high peak flux to conventional single particle sources make them an attractive source for radiography using a combination of particle species, known as multimodal imaging. Simultaneous x-ray and MeV neutron imaging of multi-material objects can yield unique advantages for material segmentation and identification within the full sample.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Atomic Energy NNC RK, Kurchatov 140000, Kazakhstan.
This work presents the results of a study on the influence of fillers on the neutron absorption capacity of materials made from ultra-high molecular weight polyethylene (UHMWPE). Composite materials based on UHMWPE were obtained using gas-flame technology with the addition of powdered UHMWPE fillers (HBO, WC, and PbO). A radiation cassette has been developed and constructed for conducting studies on the neutron absorption capacity of the material, allowing for the placement of a sample with activation indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!