Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The red fluorescent dye Sulforhodamine 101 (SR101) has been used in neuroscience research as a useful tool for staining of astrocytes, since it has been reported as a marker of astroglia in the neocortex of rodents in vivo. The aim of this work is to label SR101 with positron emission radionuclides, in order to provide a radiotracer to study its biological behavior. This is the first attempt to label SR101 by [18F], using a chemical derivatization via a sulfonamidelinker and a commercially available platform.
Methods: The synthesis of SR101 N-(3-Bromopropyl) sulfonamide and SR101 N-(3- Fluoropropyl) sulfonamide (2B-SRF101) was carried out. The radiosynthesis of SR101 N-(3- [18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101) was performed in a TRACERlab® FX-FN. Different labeling conditions were tested. Three pilot batches were produced and quality control was performed. Lipophilicity, plasma protein binding and radiochemical stability of [18F]2BSRF101 in final formulation and in plasma were determined.
Results: SR101 N-(3-Bromopropyl) sulfonamide was synthetized as a precursor for radiolabeling with [18F]. 2B-SRF101 was prepared for analytical purpose. [18F]2B-SRF101 was obtained with radiochemical purity of (97.0 ± 0.6%). The yield of the whole synthesis was (11.9 ± 1.7 %), nondecay corrected. [18F]2B-SRF101 was found to be stable in final formulation and in plasma. The octanol-water partition coefficient was (Log POCT = 1.88 ± 0.14). The product showed a high percentage of plasma protein binding.
Conclusions: The derivatization of SR101 via sulfonamide-linker and the first radiosynthesis of [18 F]2B-SRF101 were performed. It was obtained in accordance with quality control specifications. In vitro stability studies verified that [18F]2B-SRF101 was suitable for preclinical evaluations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740491 | PMC |
http://dx.doi.org/10.2174/1874471010666170928112853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!