Purpose: miRNAs are implicated in drug resistance of multiple cancers including non-small cell lung cancer (NSCLC), highlighting the potential of miRNAs as chemoresistance regulators in cancer treatment. This study aims to explore the relationship between miR-181c and chemoresistance of NSCLC cells.

Methods: qRT-PCR was conducted to examine the expression of miR-181c in NSCLC tissues, and parental and cisplatin (DDP)-resistant NSCLC cells. MTT assay and flow cytometry were performed to detect the survival rate and apoptosis in NSCLC cells. Luciferase reporter assay was performed to confirm the potential target of miR-181c. Xenograft tumor experiment was applied to confirm the effect of miR-181c on DDP sensitivity of DDP-resistant NSCLC cells in vivo.

Results: miR-181c was upregulated in NSCLC tissues, and parental and DDP-resistant NSCLC cells. miR-181c downregulation or WIF1 overexpression increased DDP sensitivity of DDP-resistant NSCLC cells by decreasing survival rate and promoting DDP-induced apoptosis. miR-181c was demonstrated to be able to bind to WIF1 and negatively regulate the expression of WIF1. WIF1 knockdown abolished anti-miR-181c-induced DDP sensitivity. Moreover, anti-miR-181c suppressed the Wnt/β-catenin pathway by regulating WIF1. XAV939 treatment reversed miR-181c-induced increase in IC50 value and miR-181c-triggered decrease in apoptosis. Finally, anti-miR-181c improved DDP sensitivity of DDP-resistant NSCLC cells in vivo.

Conclusion: miR-181c contributed to DDP resistance in NSCLC cells through activation of the Wnt/β-catenin pathway by targeting WIF1, providing a potential therapeutic application for the treatment of patients with DDP-resistant NSCLC in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-017-3435-1DOI Listing

Publication Analysis

Top Keywords

nsclc cells
28
ddp-resistant nsclc
24
ddp sensitivity
16
nsclc
12
sensitivity ddp-resistant
12
mir-181c
9
non-small cell
8
cell lung
8
lung cancer
8
cells
8

Similar Publications

Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.

View Article and Find Full Text PDF

Microenvironmental β-TrCP negates amino acid transport to trigger CD8 T cell exhaustion in human non-small cell lung cancer.

Cell Rep

January 2025

The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China. Electronic address:

CD8 T cell exhaustion (Tex) has been widely acknowledged in human cancer, while the underlying mechanisms remain unclear. Here, we demonstrate that reduced amino acid (aa) metabolism and mTOR inactivation are accountable for Tex in human non-small cell lung cancer (NSCLC). NSCLC cells impede the T cell-intrinsic transcription of SLC7A5 and SLC38A1, disrupting aa transport and consequently leading to mTOR inactivation.

View Article and Find Full Text PDF

Estrogen, estrogen receptor and the tumor microenvironment of NSCLC.

Int J Cancer

January 2025

Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Lung cancer remains the foremost cause of cancer-related mortality worldwide. Clinical observations reveal a notable increase in both the proportion and mortality rate among female non-small cell lung cancer (NSCLC) patients compared to males, a trend that continues to escalate. Extensive preclinical research underscores the pivotal role of estrogen in the initiation, progression, prognosis, and treatment response of NSCLC.

View Article and Find Full Text PDF

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC Cancer

January 2025

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.

View Article and Find Full Text PDF

Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!