Source and Assessment of Metal Pollution at Khetri Copper Mine Tailings and Neighboring Soils, Rajasthan, India.

Bull Environ Contam Toxicol

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.

Published: November 2017

We present here the results of the study on metal pollution by identifying source, abundance and distribution in soil and tailings of Khetri copper complex (KCC) mines, Rajasthan India. The region is highly contaminated by copper (Cu) with higher values in the soil near overburden material (1224 mg/kg) and tailings (111 mg/kg). The average Cu (231 mg/kg) concentration of soil is ~9, 5 and 32 times higher than upper crust, world average shale (WAS) and local background soil (LS), respectively. However this reaches to ~82, 46 and 280 times higher in case of tailing when compared. The correlation and principal component analysis for soil reveals that the source of Cu, Zn, Co, Ni, Mn and Fe is mining and Pb and Cd could be result of weathering of parent rocks and other anthropogenic activities. The source for Cr in soil is both mining activities and weathering of parent rocks. The values of index of geo-accumulation (I) and pollution load index for soil using LS as background are higher compared to values calculated using WAS. The metal rich sulphide bearing overburden material as well as tailings present in the open environment at KCC mines region warrants a proper management to minimize their impact on the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-017-2175-6DOI Listing

Publication Analysis

Top Keywords

metal pollution
8
khetri copper
8
rajasthan india
8
kcc mines
8
overburden material
8
times higher
8
weathering parent
8
parent rocks
8
soil
7
source
4

Similar Publications

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.

View Article and Find Full Text PDF

Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects.

Chem Biol Interact

January 2025

Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.

View Article and Find Full Text PDF

Boron-dependent autoinducer-2-mediated quorum sensing stimulates the Cr(VI) reduction of Leucobacter chromiireducens CD49.

J Environ Manage

January 2025

Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:

Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!