Nanoparticles (NPs) containing the photo-therapeutic dye (Ce6) have been explored in multiple studies for photo-dynamic therapy (PDT). However, little work has been carried out regarding their PDT efficacy, relative to other dye containing NPs. Here polyacrylamide nanoparticles (PAAm NPs) containing Ce6 were prepared and their PDT efficacy compared to previously reported methylene blue (MB) containing PAAmNPs. It was found that, for identical NP dosages and photon doses, the Ce6 NPs are an order of magnitude more potent in killing cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611789PMC
http://dx.doi.org/10.16966/2470-3206DOI Listing

Publication Analysis

Top Keywords

pdt efficacy
8
intracellular photodynamic
4
photodynamic activity
4
activity chlorin
4
chlorin nanoparticles
4
nanoparticles nanoparticles
4
nps
4
nanoparticles nps
4
nps photo-therapeutic
4
photo-therapeutic dye
4

Similar Publications

Advancing brain immunotherapy through functional nanomaterials.

Drug Deliv Transl Res

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.

Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.

View Article and Find Full Text PDF

A chlorin e6 derivative-mediated photodynamic therapy versus doxycycline for moderate-to-severe rosacea: A prospective, randomized, controlled study.

Photodiagnosis Photodyn Ther

January 2025

Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China. Electronic address:

Background: Photodynamic therapy (PDT) is beneficial for managing rosacea, and chlorin e6 derivative-mediated photodynamic therapy (STBF-PDT) has demonstrated efficacy in reducing acne lesions with mild adverse reactions.

Objectives: This study aimed to assess the effectiveness and safety of STBF-PDT for the treatment of moderate-to-severe rosacea.

Methods: In this prospective, randomised, evaluator-blind controlled study, patients with moderate-to-severe rosacea were assigned to receive up to six STBF-PDT sessions or 100 mg of doxycycline daily for eight weeks, followed by a 24-week follow-up.

View Article and Find Full Text PDF

Hijacking the hyaluronan assisted iron endocytosis to promote the ferroptosis in anticancer photodynamic therapy.

Carbohydr Polym

March 2025

State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China. Electronic address:

Photodynamic therapy (PDT) eradicates tumor cells by the light-stimulated reactive oxygen species, which also induces lipid peroxidation (LPO) and subsequently ferroptosis, an iron-depended cell death. Ferroptosis has a tremendous therapeutic potential in cancer treatment, however, the ferroptosis efficiency is largely limited by the available iron in cells. Through hijacking the CD44-mediated iron endocytosis of hyaluronan (HA), here PDT with enhanced ferroptosis was realized by a HA@Ce6 nanogel self-assembled from HA, a photosensitizer Chlorin e6 (Ce6) and Fe as cross-linkers.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy.

View Article and Find Full Text PDF

A general strategy towards activatable nanophotosensitizer for phototoxicity-free photodynamic therapy.

Theranostics

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China.

Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!