Heat shock response is an adaptive mechanism of cells characterized by rapid synthesis of a class of proteins popularly known as heat shock proteins (HSPs) by heat-induced activation of Heat Shock Factor 1 (HSF1). In course of our earlier study to show that HSF1 regulates transcription of HYPK (Huntingtin Yeast two-hybrid protein K), a chaperone-like protein, we observed presence of few other genes within 10 kb of promoter. In an attempt to understand whether adjacent genes of are co-regulated, we identified that (small EDRK-rich factor 2), an upstream neighboring gene of is also regulated by heat stress and HSF1. We also showed that promoter can be -activated by HSF1 due to the presence of functional heat shock element (HSE). Strikingly, is linked with through a Conjoined Gene (CG) albeit the respective proteins have opposite effect on mutant Huntingtin aggregates and subsequent toxicity. Our study provides the first report on regulation of expression and thereby depicts a paradigm where two parent genes of a CG are regulated by a common transcription factor despite the fact that they code for proteins having opposite cellular function in a given context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613254 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2016.04.003 | DOI Listing |
Funct Plant Biol
January 2025
Krishi Vigyan Kendra, Siwan, Dr. RPCAU, Pusa, Bihar, India.
Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Delaware State University, Dover, DE, USA.
Background: Aggregation of transactive response DNA binding protein 43 (TDP-43) is the major pathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, in up to 50% of Alzheimer's disease (AD) cases TDP-43 pathology was discovered and this pathology has been referred to as limbic-predominant age-related TDP43 encephalopathy (LATE). Several studies reported that TDP-43 binds to heat shock protein family B (small) member 1 (HSPB1 or HSP27) but no functional evaluation of this interaction has been explored.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ohio State University College of Medicine, Neurobiology of Aging & Resilience Center, Columbus, OH, USA.
Background: The cerebrovasculature is an essential component of brain homeostasis. Cerebrovascular disorders are associated with an increased risk for neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which cerebrovascular dysfunction contributes to neurodegeneration are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Rush University Medical Center, Chicago, IL, USA.
Background: Abnormal brain insulin signaling has been associated with Alzheimer's disease pathology and a faster rate of late-life cognitive decline. However, the underlying mechanisms remain unclear. In this study, we examined whether AD-related cortical proteins identified using targeted-proteomics play a role in the association of brain insulin signaling and cognitive decline.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
Background: Alzheimer's Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression.
Method: We generated bulk RNA-sequencing in prefrontal cortex from 565 AD brain samples (non-Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!