Objective: To evaluate effects of siponimod on response to T-cell-dependent (influenza) and T-cell-independent (pneumococcal polysaccharide vaccine [PPV-23]) vaccinations in healthy participants.
Methods: In this double-blind, placebo-controlled, parallel-group study, each participant underwent a 7-week treatment period and received intramuscular injections of influenza and PPV-23 vaccines (day 21). Participants were randomized to 4 treatment groups (N = 30 each) and received placebo or siponimod 2 mg once daily in concomitant, interrupted, or preceding fashion. Individual response to vaccination was defined by a ≥4-fold (influenza) antibody titer increase and by a ≥2-fold increase in serotype-specific immunoglobulin (Ig) G concentrations (PPV-23) on day 28 vs baseline. Responder rates were compared using noninferiority analysis.
Results: Mean influenza titers were similar to placebo in the preceding and interrupted groups but lower in the concomitant group. The proportion of participants with influenza titers ≥40 four weeks after vaccination (seroprotection) was similar to placebo across all groups and antigens. In each treatment group, response criteria were met for 3 of 4 antigens including H1N1 and H3N2. A noninferior response was determined in the context of preceding treatment but not interrupted or concomitant treatment. Regarding PPV-23, approximately 90%-100% of participants exhibited a ≥2-fold increase in IgG concentrations vs baseline. Noninferior responder rates were determined for each siponimod treatment group.
Conclusions: Siponimod treatment had no relevant effect on antibody response to PPV-23. European Medicines Agency response criteria were essentially met for influenza, but titers were lower on concomitant treatment. Overall, these data suggest that siponimod has limited effect on the efficacy of vaccinations with neoantigens.
Classification Of Evidence: This study provides Class II evidence that in healthy persons, siponimod had limited effect on the immune response following influenza or pneumococcal vaccinations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608565 | PMC |
http://dx.doi.org/10.1212/NXI.0000000000000398 | DOI Listing |
J Virol
January 2025
Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.
View Article and Find Full Text PDFSci Rep
January 2025
The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.
View Article and Find Full Text PDFVaccine
January 2025
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Introduction: While it remains impossible to predict the timing of the next influenza pandemic, novel avian influenza A viruses continue to be considered a significant threat.
Methods: A Phase II study was conducted in healthy adults aged 18-64 years to assess the safety and immunogenicity of two intramuscular doses of pre-pandemic 2017 influenza A(H7N9) inactivated vaccine administered 21 days apart. Participants were randomized (n = 105 in each of Arms 1-3) to receive 3.
BMC Infect Dis
January 2025
Patient-Centered Research, Evidera, London, UK.
Background: Seasonal vaccination is the mainstay of human influenza prevention. Licensed influenza vaccines are regularly updated to account for viral mutations and antigenic drift and are standardised for their haemagglutinin content. However, vaccine effectiveness remains suboptimal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!