This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM, PM, and PM (PM-PM) were best correlated with NH, SO, and Ca, suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014-2015 owing to reduced regional biomass burning as compared to 2003-2013.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5611832 | PMC |
http://dx.doi.org/10.1002/2017JD026739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!