Diastatic Power (DP) is an important quality trait for malt used in adjunct brewing and distilling. Substantial genetic variation for DP exists within UK elite barley cultivars, but breeding progress has been slow due to the limited demand, compared to the overall barley market, and difficulties in assessing DP. Estimates of DP (taken from recommended and national list trials between 1994 and 2012) from a collection of UK elite winter and spring varieties were used to identify contrasting sets of high and low DP varieties. DNA samples were pooled within sets and exome capture sequencing performed. Allele frequency estimates of Single Nucleotide Polymorphisms (SNPs) identified from the sequencing were used to identify genomic locations associated with differences in DP. Individual genotypes were generated from a set of custom KASP assays, both within sets and in a wider germplasm collection, to validate allele frequency estimates and marker associations with DP. QTL identified regions previously linked to variation in DP as well as novel associations. QTL colocalised with a number of genes annotated as having a diastase related function. Results indicate that winter barley is more genetically diverse for genes influencing DP. The marker assays produced by this work represent a resource that is available for immediate use by barley breeders in the production of new high DP varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601066 | PMC |
http://dx.doi.org/10.3389/fpls.2017.01566 | DOI Listing |
Malting quality of barley is a complex characteristic, which is influenced by a combination of interacting traits that are regulated by various genetic and environmental factors. The activities of various enzymes play pivotal roles in determining the malting quality, as they drive the biochemical processes responsible for converting barley saccharides and proteins into fermentable sugars and amino acids during the malting process. In this study, 14 malting barley cultivars were used to investigate the relationship between enzyme activities and malting quality traits.
View Article and Find Full Text PDFGene
November 2024
USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA.
GSHO 2096 is a near isogenic barley line with extremely high grain β-amylase activity, a desirable trait in the malting and brewing industry. High levels of grain β-amylase activity are caused by a surge in endosperm-specific β-amylase (Bmy1) gene expression during the early stages of grain development with high expression levels persisting throughout development. Origins of the high β-amylase activity trait are perplexing considering GSHO 2096 is not supposed to have grain β-amylase activity.
View Article and Find Full Text PDFFoods
July 2024
Food Institute, Latvia University of Life Sciences and Technologies, Riga Street 22, LV-3004 Jelgava, Latvia.
Amylase activity in rye flour plays a crucial role in the production of rye bread. When preparing a scald in rye bread production, diastatic rye malt is utilized to augment the amylase activity of the rye flour. This study investigated the effects of the diastatic power (DP) and concentration of rye malt on the Falling Number (FN) and the rheological properties of rye flour.
View Article and Find Full Text PDFPeerJ
August 2023
Field Crops Department, Tokat Gaziosmanpasa University, Tokat, Turkey.
Background: As a result of the changing climate characteristics, it is necessary to reevaluate the planting time for crop plants. The aim of the present study was to determine the quality characteristics of malting barley cultivars in fall and spring plantings.
Methods: Sixteen malting barley cultivars were used.
PLoS One
April 2023
Plant Science Department, McGill University, Quebec, Canada.
Barley is considered as a foundation of the brewing and malting industry. Varieties with superior malt quality traits are required for efficient brewing and distillation processes. Among these, the Diastatic Power (DP), wort-Viscosity (VIS), β-glucan content (BG), Malt Extract (ME) and Alpha-Amylase (AA) are controlled by several genes linked to numerous quantitative trait loci (QTL), identified for barley malting quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!