Trends in Upstream and Downstream Process Development for Antibody Manufacturing.

Bioengineering (Basel)

Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.

Published: October 2014

A steady increase of product titers and the corresponding change in impurity composition represent a challenge for development and optimization of antibody production processes. Additionally, increasing demands on product quality result in higher complexity of processes and analytics, thereby increasing the costs for product work-up. Concentration and composition of impurities are critical for efficient process development. These impurities can show significant variations, which primarily depend on culture conditions. They have a major impact on the work-up strategy and costs. The resulting "bottleneck" in downstream processing requires new optimization, technology and development approaches. These include the optimization and adaptation of existing unit operations respective to the new separation task, the assessment of alternative separation technologies and the search for new methods in process development. This review presents an overview of existing methods for process optimization and integration and indicates new approaches for future developments.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bioengineering1040188DOI Listing

Publication Analysis

Top Keywords

process development
12
methods process
8
development
5
trends upstream
4
upstream downstream
4
process
4
downstream process
4
development antibody
4
antibody manufacturing
4
manufacturing steady
4

Similar Publications

Open wounds are one of the concerns of modern medicine. Early on, before the wound has closed, bacteria can easily enter, leading to bacterial infections. Excipients with antimicrobial effects can greatly facilitate the wound healing process.

View Article and Find Full Text PDF

Nondestructive Mechanical Characterization of Bioengineered Tissues by Digital Holography.

ACS Biomater Sci Eng

January 2025

Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview.

J Speech Lang Hear Res

January 2025

Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.

View Article and Find Full Text PDF

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!