In vitro Anti-Influenza Virus Activity of Agaricus brasiliensis KA21.

Biocontrol Sci

Department of Veterinary Medicine, Laboratory of Microbiology II, School of Veterinary Medicine, Azabu University.

Published: January 2018

 Agaricus is known to have immunostimulatory and anti-tumor effects. However, the antiviral effects of Agaricus have not yet been examined. In the present study, the antiviral effects of an extract of Agaricus brasiliensis KA21 (AE) on the H1N1 influenza virus (PR8 strain) were investigated. The anti-influenza virus effects of AE were examined by using the plaque formation inhibition test. AE inhibited the plaque formation of PR8 in a dose-dependent manner: 98 and 50% (IC) inhibition at 2.5 and 0.99 mg/mL, respectively. To elucidate the mechanisms of AE, the direct actions and adsorption and invasion inhibition of AE were examined, and were found to have no inhibitory effect on PR8 infection. Thus, in vitro antiviral effects may somehow inhibit PR8 after the viral invasion of cells. These results demonstrated that it is expected that AE can effectively prevent the spread of the influenza virus.

Download full-text PDF

Source
http://dx.doi.org/10.4265/bio.22.171DOI Listing

Publication Analysis

Top Keywords

antiviral effects
12
anti-influenza virus
8
agaricus brasiliensis
8
brasiliensis ka21
8
influenza virus
8
plaque formation
8
effects
5
vitro anti-influenza
4
virus
4
virus activity
4

Similar Publications

Introduction: Inflammation plays a role in coronavirus disease 2019 (COVID-19) pathophysiology and anti-inflammatory drugs may help reduce the disease severity. Levamisole is an anthelmintic drug with immunomodulatory and possible antiviral effects. This study aimed to evaluate the role of levamisole in the treatment of patients with COVID-19.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

AGA Clinical Practice Guideline on the Prevention and Treatment of Hepatitis B Virus Reactivation in At-Risk Individuals.

Gastroenterology

February 2025

Section of Gastroenterology and Hepatology, Veterans Affairs Northeast Ohio Health Care System, Cleveland, Ohio; Division of Gastroenterology and Hepatology, Case Western Reserve University, Cleveland, Ohio.

Background & Aims: Hepatitis B reactivation (HBVr) can occur due to a variety of immune-modulating exposures, including multiple drug classes and disease states. Antiviral prophylaxis can be effective in mitigating the risk of HBVr. In select cases, clinical monitoring without antiviral prophylaxis is sufficient for managing the risk of HBVr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!