Trust thy neighbour in times of trouble: background risk alters how tadpoles release and respond to disturbance cues.

Proc Biol Sci

Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4.

Published: September 2017

In aquatic environments, uninjured prey escaping a predator release chemical disturbance cues into the water. However, it is unknown whether these cues are a simple physiological by-product of increased activity or whether they represent a social signal that is under some control by the sender. Here, we exposed wood frog tadpoles () to either a high or low background risk environment and tested their responses to disturbance cues (or control cues) produced by tadpoles from high-risk or low-risk backgrounds. We found an interaction between risk levels associated with the cue donor and cue recipient. While disturbance cues from low-risk donors did not elicit an antipredator response in low-risk receivers, they did in high-risk receivers. In addition, disturbance cues from high-risk donors elicited a marked antipredator response in both low- and high-risk receivers. The response of high-risk receivers to disturbance cues from high-risk donors was commensurate with other treatments, indicating an all-or-nothing response. Our study provides evidence of differential production and perception of social cues and provides insights into their function and evolution in aquatic vertebrates. Given the widespread nature of disturbance cues in aquatic prey, there may exist a social signalling system that remains virtually unexplored by ecologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627207PMC
http://dx.doi.org/10.1098/rspb.2017.1465DOI Listing

Publication Analysis

Top Keywords

disturbance cues
28
high-risk receivers
12
cues
10
background risk
8
cues aquatic
8
antipredator response
8
cues high-risk
8
high-risk donors
8
disturbance
7
high-risk
6

Similar Publications

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Neurons migrate in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. The former step is critical for determining the migratory route in response to extracellular guidance cues. In the latter step, neurons must generate robust forces that translocate the bulky soma against mechanical barriers of the surrounding three-dimensional environment.

View Article and Find Full Text PDF

Phenological divergence between plants and animals under climate change.

Nat Ecol Evol

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Climate change has altered the timing of recurring biological cycles in both plants and animals. Phenological changes may be unequal within and among trophic levels, potentially impacting the intricate interactions that regulate ecosystem functioning. Here we compile and analyse a global dataset of terrestrial phenological observations, including nearly half a million time series for both plants and animals.

View Article and Find Full Text PDF

There are gaps in our understanding of sturgeon's response to anthropogenic sounds and the spatial scales at which they occur. We measured spatial displacement of Atlantic sturgeon in the St. Lawrence River at various distances of approaching merchant ships.

View Article and Find Full Text PDF

Sensory environments are rapidly changing due to increased human activity in urban and non-urban areas alike. For instance, natural and anthropogenic sounds can interfere with parent-offspring communication and mask cues reflective of predation risk, resulting in elevated vigilance at the cost of provisioning. Here we present data from two separate studies involving anthropogenic noise and nestling provisioning behavior in Western Bluebirds (): one in response to short-term (1 h) experimental noise playback and a second in the context of nests located along a gradient of exposure to continuous noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!