The Long 3'UTR mRNA of Is Essential for Translation-Dependent Plasticity of Spontaneous Release in .

J Neurosci

Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454-9110,

Published: November 2017

A null mutation of the gene () was generated using homologous recombination. Null animals survive to larval and pupal stages due to a large maternal contribution of mRNA, which consists of a short 3'-untranslated region (UTR) form lacking regulatory elements that guide local translation. The selective loss of the long 3'UTR mRNA in -null larvae allows us to test its role in plasticity. Development and evoked function of the larval neuromuscular junction are surprisingly normal, but the resting rate of miniature excitatory junctional potentials (mEJPs) is significantly lower in mutants. Mutants also lack the ability to increase mEJP rate in response to spaced depolarization, a type of activity-dependent plasticity shown to require both transcription and translation. Consistent with this, overexpression of miR-289 in wild-type animals blocks plasticity of spontaneous release. In addition to the defects in regulation of mEJP rate, CaMKII protein is largely lost from synapses in the mutant. All phenotypes are non-sex-specific and rescued by a fosmid containing the entire wild-type locus, but only viability and CaMKII localization are rescued by genomic fosmids lacking the long 3'UTR. This suggests that synaptic CaMKII accumulates by two distinct mechanisms: local synthesis requiring the long 3'UTR form of mRNA and a process that requires zygotic transcription of mRNA. The origin of synaptic CaMKII also dictates its functionality. Locally translated CaMKII has a privileged role in regulation of spontaneous release, which cannot be fulfilled by synaptic CaMKII from the other pool. As a regulator of synaptic development and plasticity, CaMKII has important roles in both normal and pathological function of the nervous system. shows high conservation between and humans, underscoring the usefulness of in modeling its function. -null mutants remain viable throughout development, enabling morphological and electrophysiological characterization. Although the structure of the synapse is normal, maternally contributed CaMKII does not localize to synapses. Zygotic production of mRNA with a long 3'-untranslated region is necessary for modulating spontaneous neurotransmission in an activity-dependent manner, but not for viability. These data argue that regulation of CaMKII localization and levels by local transcriptional processes is conserved. This is the first demonstration of distinct functions for mRNA variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666580PMC
http://dx.doi.org/10.1523/JNEUROSCI.1313-17.2017DOI Listing

Publication Analysis

Top Keywords

long 3'utr
16
spontaneous release
12
synaptic camkii
12
camkii
9
3'utr mrna
8
plasticity spontaneous
8
3'-untranslated region
8
mejp rate
8
camkii localization
8
mrna
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!