This study covers the evaluation of the structure and the capacity in adsorbing orthophosphate ions of kaolinites collected from sampling sites in Manaus (Brazil). The kaolinites were obtained using physical fractioning (sieving/siphoning) techniques and chemical treatment with HCl, H2SO4, H2O2 and KCl. The investigation of the kaolinite lattices involved the Hinckley and Plançon indexes determined from X-ray diffraction data, Fourier transformed infrared spectroscopy, scanning electron microscopy and Mössbauer spectroscopy. The absorption capacity of orthophosphate ions was calculated by Freundlich and Langergren isotherms. A transitional state was observed in the crystallographic structure from kaolinites because of the isomorphic substitution of Al3+ by Fe3+. This isomorphic substitution occurs accompanied by the optical pleochroism behavior, but it also reduces the mean particle sizes and increases the number of structural defects and magnetic properties of these kaolinites. Mössbauer spectroscopy showed that the substituting Fe3+ preferentially occupies octahedral sites. In the kaolinite lattices there are different octahedral sites of Al bounded by cis-OH-Fe3+ and trans-OH-Fe3+ octahedral sites. The kaolinite from the Kao1 sample has a higher number of cis-OH-Fe3+ from octahedral sites and is able to adsorb higher contents of orthophosphate ions than those from samples Kao2 and Kao3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765201720160519 | DOI Listing |
Nano Lett
January 2025
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Aix-Marseille University, CNRS, PIIM, F-13013 Marseille, France.
Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFBMC Chem
January 2025
Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
The structural and electronic behavior of thiosemicarbazone (TSC)-based metal complexes of Mn (II), Fe (II), and Ni (II) have been investigated. The synthesized metal complexes were characterized using elemental analysis, magnetic susceptibility, molar conductivity, FTIR, and UV-Vis spectroscopy, the computational path helped with further structural investigation. The solubility test on the TSC and its complexes revealed their solubility in most organic solvents.
View Article and Find Full Text PDFPLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!