One of the core clinical criteria of Dementia with Lewy bodies (DLB) are fluctuations of cognition. Underlying processes may be rather functional than neurodegenerative, reflected by, for example, factors present in cerebrospinal fluid (CSF). The aim of this study was to identify in-vitro neuronal network activity (ivNNA) changes of CSF from DLB patients compared with patients with Parkinson's disease (PD) and controls. Primary neuronal mouse cultures were grown on microelectrode arrays to record ivNNA when exposed to respective CSF samples. If exposed to CSF of DLB patients, ivNNA showed a reduced spike rate and burst rate compared with CSF of PD patients and controls. Our data are suggestive of the presence of functional factors in the CSF of DLB patients that differentiate network activity from PD patients and controls. Future studies should evaluate whether this pilot observation might be related to fluctuations of cognition in DLB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000000890 | DOI Listing |
Sci Rep
January 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.
View Article and Find Full Text PDFCell Death Discov
January 2025
The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.
View Article and Find Full Text PDFBMC Genomics
January 2025
Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!