Shared Nearest Neighbor Clustering in a Locality Sensitive Hashing Framework.

J Comput Biol

2 CEA, LIST, Laboratoire d'Analyse de Données et Intelligence des Systèmes, Gif-sur-Yvette, France .

Published: February 2018

We present a new algorithm to cluster high-dimensional sequence data and its application to the field of metagenomics, which aims at reconstructing individual genomes from a mixture of genomes sampled from an environmental site, without any prior knowledge of reference data (genomes) or the shape of clusters. Such problems typically cannot be solved directly with classical approaches seeking to estimate the density of clusters, for example, using the shared nearest neighbors (SNN) rule, due to the prohibitive size of contemporary sequence datasets. We explore here a new approach based on combining the SNN rule with the concept of locality sensitive hashing (LSH). The proposed method, called LSH-SNN, works by randomly splitting the input data into smaller-sized subsets (buckets) and employing the SNN rule on each of these buckets. Links can be created among neighbors sharing a sufficient number of elements, hence allowing clusters to be grown from linked elements. LSH-SNN can scale up to larger datasets consisting of millions of sequences, while achieving high accuracy across a variety of sample sizes and complexities.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2017.0113DOI Listing

Publication Analysis

Top Keywords

snn rule
12
shared nearest
8
locality sensitive
8
sensitive hashing
8
nearest neighbor
4
neighbor clustering
4
clustering locality
4
hashing framework
4
framework algorithm
4
algorithm cluster
4

Similar Publications

Spiking neurons are essential for building energy-efficient biomimetic spatiotemporal systems because they communicate with other neurons using sparse and binary signals. However, the achievable high density of artificial neurons having a capacitor for emulating the integrate function of biological neurons has a limit. Furthermore, a low-voltage operation (<1.

View Article and Find Full Text PDF

The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired learning methods do not cover all possible learning opportunities, resulting in limited performance. We propose a new bio-plausible learning rule, target-modulated STDP (TSTDP), for higher learning efficiency and accuracy.

View Article and Find Full Text PDF

Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware has the potential to significantly reduce the energy consumption of artificial neural network training. SNNs trained with Spike Timing-Dependent Plasticity (STDP) benefit from gradient-free and unsupervised local learning, which can be easily implemented on ultra-low-power neuromorphic hardware. However, classification tasks cannot be performed solely with unsupervised STDP.

View Article and Find Full Text PDF

Neuromorphic computing research is being actively pursued to address the challenges posed by the need for energy-efficient processing of big data. One of the promising approaches to tackle the challenges is the hardware implementation of spiking neural networks (SNNs) with bio-plausible learning rules. Numerous research works have been done to implement the SNN hardware with different synaptic plasticity rules to emulate human brain operations.

View Article and Find Full Text PDF

In this study, we explore spintronic synapses composed of several Magnetic Tunnel Junctions (MTJs), leveraging their attractive characteristics such as endurance, nonvolatility, stochasticity, and energy efficiency for hardware implementation of unsupervised neuromorphic systems. Spiking Neural Networks (SNNs) running on dedicated hardware are suitable for edge computing and IoT devices where continuous online learning and energy efficiency are important characteristics. We focus in this work on synaptic plasticity by conducting comprehensive electrical simulations to optimize the MTJ-based synapse design and find the accurate neuronal pulses that are responsible for the Spike Timing Dependent Plasticity (STDP) behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!