Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries.

ACS Nano

Department of Chemistry, ‡Smalley-Curl Institute and the NanoCarbon Center, and §Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.

Published: November 2017

Li metal has been considered an outstanding candidate for anode materials in Li-ion batteries (LIBs) due to its exceedingly high specific capacity and extremely low electrochemical potential, but addressing the problem of Li dendrite formation has remained a challenge for its practical rechargeable applications. In this work, we used a porous carbon material made from asphalt (Asp), specifically untreated gilsonite, as an inexpensive host material for Li plating. The ultrahigh surface area of >3000 m/g (by BET, N) of the porous carbon ensures that Li was deposited on the surface of the Asp particles, as determined by scanning electron microscopy, to form Asp-Li. Graphene nanoribbons (GNRs) were added to enhance the conductivity of the host material at high current densities, to produce Asp-GNR-Li. Asp-GNR-Li has demonstrated remarkable rate performance from 5 A/g (1.3C) to 40 A/g (10.4C) with Coulombic efficiencies >96%. Stable cycling was achieved for more than 500 cycles at 5 A/g, and the areal capacity reached up to 9.4 mAh/cm at a highest discharging/charging rate of 20 mA/cm that was 10× faster than that of typical LIBs, suggesting use in ultrafast charging systems. Full batteries were also built combining the Asp-GNR-Li anodes with a sulfurized carbon cathode that possessed both high power density (1322 W/kg) and high energy density (943 Wh/kg).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b05874DOI Listing

Publication Analysis

Top Keywords

ultrafast charging
8
porous carbon
8
host material
8
high
5
charging high
4
high capacity
4
capacity asphalt-lithium
4
asphalt-lithium metal
4
metal batteries
4
batteries metal
4

Similar Publications

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!