A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors. | LitMetric

Doping Ag in ZnO Nanorods to Improve the Performance of Related Enzymatic Glucose Sensors.

Sensors (Basel)

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: September 2017

In this paper, the performance of a zinc oxide (ZnO) nanorod-based enzymatic glucose sensor was enhanced with silver (Ag)-doped ZnO (ZnO-Ag) nanorods. The effect of the doped Ag on the surface morphologies, wettability, and electron transfer capability of the ZnO-Ag nanorods, as well as the catalytic character of glucose oxidase (GOx) and the performance of the glucose sensor was investigated. The results indicate that the doped Ag slightly weakens the surface roughness and hydrophilicity of the ZnO-Ag nanorods, but remarkably increases their electron transfer ability and enhances the catalytic character of GOx. Consequently, the combined effects of the above influencing factors lead to a notable improvement of the performance of the glucose sensor, that is, the sensitivity increases and the detection limit decreases. The optimal amount of the doped Ag is determined to be 2 mM, and the corresponding glucose sensor exhibits a sensitivity of 3.85 μA/(mM·cm²), detection limit of 1.5 μM, linear range of 1.5 × 10-6.5 mM, and Michaelis-Menten constant of 3.87 mM. Moreover, the glucose sensor shows excellent selectivity to urea, ascorbic acid, and uric acid, in addition to displaying good storage stability. These results demonstrate that ZnO-Ag nanorods are promising matrix materials for the construction of other enzymatic biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677436PMC
http://dx.doi.org/10.3390/s17102214DOI Listing

Publication Analysis

Top Keywords

glucose sensor
20
zno-ag nanorods
16
enzymatic glucose
8
electron transfer
8
catalytic character
8
performance glucose
8
detection limit
8
glucose
7
nanorods
5
sensor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!