We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2017.2753804 | DOI Listing |
Adv Sci (Weinh)
January 2025
Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.
View Article and Find Full Text PDFChem Biodivers
January 2025
UNIFESSPA: Universidade Federal do Sul e Sudeste do Para, Faculdade de Psicologia, Rod. BR-230 (Transamazônica), Loteamento Cidade Jardim, Av. dos Ipês, s/n.º - Ci, 68503000, Marabá, BRAZIL.
Chrysin (5,7-dihydroxyflavone) is a natural flavonoid with potential anxiolytic-like effects in preclinical models. Acute treatment with this molecule (0 - 10 mg/kg) produced a biphasic dose-response in the zebrafish light/dark test (LDT), with anxiolytic-like effect at low doses and anxiogenic-like effects at high doses. Chrysin (1 mg/kg) decreased anxiety-like behavior in the zebrafish novel tank test (NTT), but did not prevent the anxiogenic effects of acute stress.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Photonics, Leibniz University Hannover, 30167, Hannover, Germany.
Large-scale quantum networks require dynamic and resource-efficient solutions to reduce system complexity with maintained security and performance to support growing number of users over large distances. Current encoding schemes including time-bin, polarization, and orbital angular momentum, suffer from the lack of reconfigurability and thus scalability issues. Here, we demonstrate the first-time implementation of frequency-bin-encoded entanglement-based quantum key distribution and a reconfigurable distribution of entanglement using frequency-bin encoding.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
University of Science and Technology of China, Hefei 230026, China.
Defect detection and classification in super-high reflector mirrors and their substrates are crucial for manufacturing laser gyroscope systems. This paper presents a prototype designed to meet the requirements for the reflection and transmission of laser gyroscope mirror substrates. The prototype featured two measurement channels (bright field and dark field) and could detect defects on patterned and unpatterned surfaces.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!