We report herein a novel chemical-genetic method for assaying RNA localization within living cells. RNA localization is critical for normal physiology as well as the onset of cancer and neurodegenerative disorders. Despite its importance, there is a real lack of chemical methods to directly assay RNA localization with high resolution in living cells. Our novel approach relies on in situ nucleobase oxidation by singlet oxygen generated from spatially confined fluorophores. We demonstrate that our novel method can identify RNA molecules localized within specific cellular compartments. We anticipate that this platform will provide the community with a much-needed methodology for tracking RNA localization within living cells, and set the stage for systematic large scale analysis of RNA localization in living systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.7b00519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!