The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-017-3108-3 | DOI Listing |
Eur J Clin Microbiol Infect Dis
January 2018
Microbiology Laboratory, CUB-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period.
View Article and Find Full Text PDFJ Antimicrob Chemother
February 2013
Laboratoire de Microbiologie, CHU Mont-Godinne, Université catholique de Louvain, 5530 Yvoir, Belgium.
Objectives: Rapid diagnosis and appropriate empirical antimicrobial therapy before the availability of conventional microbiological results is of pivotal importance for the clinical outcome of ventilator-associated pneumonia (VAP). We evaluated the VAPChip, a novel, closed cartridge molecular tool aiming to identify directly from clinical samples and within a working day the principal bacteria causative of VAP as well as clinically relevant β-lactam resistance genes.
Methods: The Real-time Array PCR for Infectious Diseases (RAP-ID) is a novel technology that combines multiplex PCR with real-time microarray detection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!