The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of As, Re and Rh are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt02407jDOI Listing

Publication Analysis

Top Keywords

chemistry radiochemistry
8
high specific
8
specific activity
8
university missouri
8
radiochemistry isotopes
4
isotopes relevant
4
relevant radiopharmaceutical
4
radiopharmaceutical applications
4
applications high
4
activity radionuclides
4

Similar Publications

Flow electrolytic separation of radionuclides for interference suppression in γ-spectrometry.

Anal Chim Acta

February 2025

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:

Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Apart from HER2-positive, triple-negative breast cancer (TNBC) is the second most highly invasive type of breast cancer. Although TNBC does not overexpress HER2 receptors, it has been observed that EGFR protein expression is present in this specific type of tumor, making it an attractive target for immune and radiopharmaceutical treatments. In our current study, we used Pd (T = 13.

View Article and Find Full Text PDF

Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!