Endocytosis and lysosomal degradation of GluA2/3 AMPARs in response to oxygen/glucose deprivation in hippocampal but not cortical neurons.

Sci Rep

Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.

Published: September 2017

Global cerebral ischemia results in oxygen and glucose deprivation (OGD) and consequent delayed cell death of vulnerable neurons, with hippocampal CA1 neurons more vulnerable than cortical neurons. Most AMPA receptors (AMPARs) are heteromeric complexes of subunits GluA1/GluA2 or GluA2/GluA3, and the presence of GluA2 renders AMPARs Ca-impermeable. In hippocampal CA1 neurons, OGD causes the synaptic expression of GluA2-lacking Ca-permeable AMPARs, contributing to toxic Ca influx. The loss of synaptic GluA2 is caused by rapid trafficking of GluA2-containing AMPARs from the cell surface, followed by a delayed reduction in GluA2 mRNA expression. We show here that OGD causes endocytosis, lysosomal targeting and consequent degradation of GluA2- and GluA3-containing AMPARs, and that PICK1 is required for both OGD-induced GluA2 endocytosis and lysosomal sorting. Our results further suggest that GluA1-containing AMPARs resist OGD-induced endocytosis. OGD does not cause GluA2 endocytosis in cortical neurons, and we show that PICK1 binding to the endocytic adaptor AP2 is enhanced by OGD in hippocampal, but not cortical neurons. We propose that endocytosis of GluA2/3, caused by a hippocampal-specific increase in PICK1-AP2 interactions, followed by PICK1-dependent lysosomal targeting, are critical events in determining changes in AMPAR subunit composition in the response to ischaemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614987PMC
http://dx.doi.org/10.1038/s41598-017-12534-wDOI Listing

Publication Analysis

Top Keywords

cortical neurons
16
endocytosis lysosomal
12
hippocampal cortical
8
hippocampal ca1
8
ca1 neurons
8
lysosomal targeting
8
glua2 endocytosis
8
ampars
7
neurons
7
endocytosis
6

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

The Brain's Aging Resting State Functional Connectivity.

J Integr Neurosci

January 2025

Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.

View Article and Find Full Text PDF

A water extract of the Ayurvedic plant (L.) Urban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and Alzheimer's disease and affects dendritic arborization, mitochondrial activity, and oxidative stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA) are constituents associated with these bioactivities of CAW, although little is known about how interactions between these compounds contribute to the plant's therapeutic benefit.

View Article and Find Full Text PDF

Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers.

J Clin Med

January 2025

Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.

Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!