The Mexican burrowing toad Rhinophrynus dorsalis is the sole extant representative of the Rhinophrynidae. United in the superfamily Pipoidea, the Rhinophrynidae is considered to be the sister-group to the extant Pipidae which comprises Hymenochirus, Pipa, Pseudhymenochirus and Xenopus. Cationic, α-helical host-defense peptides of the type found in Hymenochirus, Pseudhymenochirus, and Xenopus species (hymenochirins, pseudhymenochirins, magainins, and peptides related to PGLa, XPF, and CPF) were not detected in norepinephrine-stimulated skin secretions of R. dorsalis. Skin secretions of representatives of the genus Pipa also do not contain cationic α-helical host-defense peptides which suggest, as the most parsimonious hypothesis, that the ability to produce such peptides by frogs within the Pipidae family arose in the common ancestor of (Hymenochirus+Pseudhymenochirus)+Xenopus after divergence from the line of evolution leading to extant Pipa species. Peptidomic analysis of the R. dorsalis secretions led to the isolation of rhinophrynin-27, a proline-arginine-rich peptide with the primary structure ELRLPEIARPVPEVLPARLPLPALPRN, together with rhinophrynin-33 containing the C-terminal extension KMAKNQ. Rhinophrynin-27 shows limited structural similarity to the porcine multifunctional peptide PR-39 but it lacks antimicrobial and cytotoxic activities. Like PR-39, the peptide adopts a poly-l-proline helix but some changes in the circular dichroism spectrum were observed in the presence of anionic sodium dodecylsulfate micelles consistent with the stabilization of turn structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2017.09.012DOI Listing

Publication Analysis

Top Keywords

skin secretions
12
host-defense peptides
12
peptidomic analysis
8
mexican burrowing
8
burrowing toad
8
toad rhinophrynus
8
rhinophrynus dorsalis
8
proline-arginine-rich peptide
8
pseudhymenochirus xenopus
8
cationic α-helical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!