Crossover from equilibration to aging: Nonequilibrium theory versus simulations.

Phys Rev E

Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP, México.

Published: August 2017

Understanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids. The same theory explains that this abrupt transition will always be observed as a blurred crossover due to the unavoidable finiteness of the time window of any experimental observation. We find that within their finite waiting-time window, the simulations confirm the general trends predicted by the theory.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.022608DOI Listing

Publication Analysis

Top Keywords

glass transition
12
equilibration aging
8
theory
5
crossover
4
crossover equilibration
4
aging nonequilibrium
4
nonequilibrium theory
4
theory versus
4
versus simulations
4
simulations understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!