The celebrated work of Onsager on hard particle systems, based on the truncated second order virial expansion, is valid at relatively low volume fractions for large aspect ratio particles. While it predicts the isotropic-nematic phase transition, it does not provide a realistic equation of state in that the pressure remains finite for arbitrarily high densities. In this work, we derive a mean field density functional form of the Helmholtz free energy for nematics with hard core repulsion. In addition to predicting the isotropic-nematic transition, the model provides a more realistic equation of state. The energy landscape is much richer, and the orientational probability distribution function in the nematic phase possesses a unique feature-it vanishes on a nonzero measure set in orientation space.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.022704DOI Listing

Publication Analysis

Top Keywords

density functional
8
realistic equation
8
equation state
8
functional theory
4
theory dense
4
dense nematic
4
nematic liquid
4
liquid crystals
4
crystals steric
4
steric interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!