Generalized elastica patterns in a curved rotating Hele-Shaw cell.

Phys Rev E

Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901 Brazil.

Published: August 2017

We study a family of generalized elasticalike equilibrium shapes that arise at the interface separating two fluids in a curved rotating Hele-Shaw cell. This family of stationary interface solutions consists of shapes that balance the competing capillary and centrifugal forces in such a curved flow environment. We investigate how the emerging interfacial patterns are impacted by changes in the geometric properties of the curved Hele-Shaw cell. A vortex-sheet formalism is used to calculate the two-fluid interface curvature, and a gallery of possible shapes is provided to highlight a number of peculiar morphological features. A linear perturbation theory is employed to show that the most prominent aspects of these complex stationary patterns can be fairly well reproduced by the interplay of just two interfacial modes. The connection of these dominant modes to the geometry of the curved cell, as well as to the fluid dynamic properties of the flow, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.023103DOI Listing

Publication Analysis

Top Keywords

hele-shaw cell
12
curved rotating
8
rotating hele-shaw
8
curved
5
generalized elastica
4
elastica patterns
4
patterns curved
4
cell
4
cell study
4
study family
4

Similar Publications

Article Synopsis
  • The study examines how compressed nitrogen gas interacts with a complex fluid, magnesium lithium phyllosilicate (MLPS), through phenomena known as viscous fingering (VF) and elastic fracture (EFr) in a controlled environment designed as a Hele-Shaw cell.
  • Viscous fingering primarily results in finger-like structures where gas invasion affects a confined region, with a notable velocity distribution featuring a larger component parallel to the growth direction; conversely, elastic fracture entails a larger disturbed area with a more complex velocity distribution around the bubble.
  • The research emphasizes the differences in the velocity fields of VF and EFr, proposing quantitative indicators to measure characteristics such as the affected area ratio and velocity
View Article and Find Full Text PDF

This study uses numerical methods (ANSYS-Fluent) to investigate the viscous fingering of the displaced phase as a shear-thinning fluid in the classic three-dimensional Hele-Shaw cell. Comparing the behavior of fingerings with different properties on the upper and lower surfaces of a three-dimensional model, it was found that when the upper and lower surfaces are walls, under the combined action of moving contact lines and Saffman-Taylor instability, fingering splitting occurs at the tip, resulting in the appearance of two fingers at the interface. In addition, we have found that interfacial tension has a suppressive effect on short waves.

View Article and Find Full Text PDF

Interaction between gas channels in water-saturated sands.

Phys Rev E

August 2024

Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon-CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 7, France.

This work investigates the interaction between gas channels in a vertical Hele-Shaw cell when air is injected simultaneously from two points at a constant flow rate. Unlike single-injection experiments, this dual-point system induces the formation of numerous bubbles, thereby intensifying the interactions between air channels. We use an image analysis technique for tracking motion in the granular bed to define a flow density parameter throughout the cell.

View Article and Find Full Text PDF

Stability Transition in Gap Expansion-Driven Interfacial Flow.

Phys Rev Lett

July 2024

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China.

We investigate interfacial instability in a lifting Hele-Shaw cell by experiments and theory. We characterize the unexplored transition from stable to unstable patterns under a wide range of controlling parameters. Surprisingly, we find that the perturbation growth rate-based criterion for the onset of instability from linear stability theory is too strict by over 3 orders of magnitude.

View Article and Find Full Text PDF

Periodic Precipitation in a Confined Liquid Layer.

J Phys Chem Lett

May 2024

Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.

Pattern formation is a ubiquitous phenomenon in animate and inanimate systems generated by mass transport and reaction of chemical species. The Liesegang phenomenon is a self-organized periodic precipitation pattern always studied in porous media such as hydrogels and aerogels for over a century. The primary consideration of applying the porous media is to prevent the disintegration of the precipitation structures due to the sedimentation of the precipitate and induced fluid flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!